REVEALED

NICK HAMPSHIRE

i

) .
g P
e
X 1 <F
-
L \ 3 -
\ o \'\ J..‘J '
k -
\ 7 <5 ;
32 T W N
* v o
«
- -*. //’ <
\ ’
\ <
- A e
- \ .
i\ W
3 S D 5 .
: | A
- y ‘\\
7 o
i g~ b 3
A - \
o TR \J
AE N h
3 DEn.
\ \ 42

VIC
REVEALED

NICK HAMPSHIRE

DUCKWORTH

First publishedin 1982 by
Gerald Duckworth & Co. Ltd
The Old Piano Factory
43 Gloucester Crescent, London NW1

© 1982 by Nick Hampshire

Allrights reserved. No part of this publication
may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means,
or otherwise, without the prior permission of the
publisher.

ISBNO-7156-1699-4

British Library Cataloguing in Publication Data
Hampshire, Nick

1. Vic (Computer)

1. Title

001.64'04 QA76.8.P47

ISBN 0-7156-1699-4

Typeset by Centrepoint Typesetters Ltd., London
Printed in Great Britain by
Redwood Burn Ltd., Trowbridge
and bound by Pegasus Bookbinding, Melksham

INTRODUCTION

This book is a collection of discoveries about the VIC, how and why it
works, and how to use these facts to write better programs and perform more
interesting functions. The book is divided into five sections, each section
covering one of the principal functional blocks into which the basic VIC
computer can be divided. The different aspects of the VIC dealt with in each
section cover most of the advanced applications for which the VIC can be
used.

The VIC is produced in several slightly different versions, in different parts
of the world. This book is written for version 7 machines which are designed
for use with European PAL TV sets. The US version 6 machines use the 65660
VIC chip which is compatible with the US 525 line TV. The Japanese version 1
machines use the 6560 and also have Japanese character keyboard and
character generator. There are slight differences in the operating system
software of these three versions but they do not affect most of the information
in this book.

| should like to thank Commodore UK and Commodore US for their
assistance in writing this book, in particular the following people: John Baxter
and Malcolm North of CBM UK and Mike Tomczyk, Shiraz Shivji and Bob
Russell of CBM US.

Nick Hampshire

CONTENTS

1 — The 6502 Microprocessor . -V
2 — Vic System Software — 42
3 — The 6561 Video Interface Chip — 110
4 — The 65622 Via and the User Port — 150
5 — Vic I/0 Functions — 186
APPENDIX 7 1 — CBM Codes 237
71 2 — Wedge Program 243
ZI'3 — 6502 Inst. 263
174 — Hex-Dec 255
Z£5 — Circuit Diagrams 257

116 — Monitor Inst. 263

2 — 6502 Microprocessor

3 — Memory Usage and 6502 Instruction Cycle
7 — Accumulator and Arithmetic

11 — Addressing Modes

14 — Processor Status Register and
Use of Flags

16 — Branches, Jumps and Program Counter
19 — Stack Register and Its Use

21 — Index Registers

23 — Data Modify Instructions

24 — Interrupts and Initialisation

27 — Machine Code on the Vic

32 — Writing Machine Code Programs

1 THE 6502 MICROPROCESSOR

G-

Al

INTERRUPY

A0 € X

INDEX

—— | 1
-

Al ——

A2 ¢——n

REGISTER fo—o!
A —]

»
@
-
Al ——] STACK
POINT
AEGISTER fo—d
[} —) o R |
£ 3 z
; INSTRUC TION
|
A& E DECODE
=
ALU
A7 ——d 3 Og
» J U
»
z
’ 2
" -
A8 —nrl
3 ACCUMULATOR TIMING
% K coNTROL
A9 ¢—d g
g |
AV) nnnd » PG L 7\
K3
z |
[S—] pCH
: o [T —m pr— oroon
L]
x REGISTER GENERATOR [TBOIN
Py pu—
INPUT pe 91 out
DATA
A3 ¢t LATCH - ¢20ut

Al e

I

DATA 8US
BUFFER
A)S @mem—ead

INSTRUCTION DBE

REGISTER

T

iR

oo
o

02
03
D4
oS
Dé
o7

Fig. 1 — Block diagram of internal structure of 6502.

THE 652 MICROPROCESSOR

When a program is run on the VIC all the instructions are performed
by one component, the microprocessor. There are a range of different
microprocessors, this particular device is manufactured by MOS
Technology and known as the 6602. It is an elght bit microprocessor,
eight bits meaning that during each instruction or operation cycle,
eight bits of data are operated upon or transferred simultaneously.

A block diagram of the internal structure (known as the system
architecture) is shown in Figure 1. This may appear rather complex,
but it can be divided into two sections. One called the_control section,
the other the register section. The control section lies on the rlght side
of the drawing, the register section on the left. All the processing is

carried out within the register section of the chip, instructions
obtained from program memory are implemented by a series of data
transfers within this section. Each of the 56 different instructions
which the 6502 recognises involves a unique set of data transfers. It is
the control section which recognises the instruction, and initiates the
correct sequence of data transfers. The instructions enter the
processor via the data bus and are latched into the instruction register
to be decoded by the control logic. Since most instructions require
more than one data transfer within the register section, a source of
timing signals is required to ensure the correct sequence, this is done
by the timing control unit.

Each data transfer which takes place within the register section, is
the result of the decoding of the instruction register and the timing
control unit by the control logic, whose outputs enable the relevant
registers. When programming at a machine level a primary concern is
the control and manipulation of data within the processors registers.
To understand the function of the microprocessors instruction set,
one must understand the function of its registers.

MEMORY USAGE AND THE 6502 INSTRUCTION CYCLE

The 6502 microprocessor has a 16 line address bus, this enables it to
access 2'® or 64K of memory. Any one of the 65,536 memory locations
can be accessed by the processor placing the correct binary value
corresponding to the memory location on the address bus. The eight
bits or byte of data located at the addressed memory location can
then be read, or if required changed, via the eight line data bus. Since
all the processor registers and memory are only eight bits long it
requires two bytes to specify a sixteen bit memory address. The
bottom eight bits are referred to as the high order address. By dividing
the 16 bit address into two 8 bit sections the entire addressable
memory area can be split into logical blocks, or pages. Memory within
each page can be addressed using the low order address byte, each
page has 256 memory locations and there are 256 pages. Page zero
starts at location O and ends at address 255, page one goes from
address 256 to 511. Apart from two important exceptions the concept
of paging is not important to the programmer, these being, page one
which contains the processor stack, and page zero which has special
addressing modes.

It is usual to express memory addresses and their data contents in
hexadecimal notation, this being easier to write than binary, yet more
easily converted into binary than a decimal value. The convention is to
identify hexadecimal values by preceding the value with a dollar sign;
this prevents any confusion as to whether the value is in hexadecimal
or decimal. In hexadecimal any address is represented as a four digit
value, the first two digits being the high order address byte and the
bottom two digits the low order address byte. The paging concept is
thus clearly seen in a -hexadecimal address. Any data value is
represented in hexadecimal as a two digit value.

Memory is used by the processor for the storage of both programs
and data, the data can be either included within the program, usually
as constants, or in separate data tables. Programs can be stored either
in RAM or ROM memory but variable data can only be stored in RAM
memory. Each instruction in a machine code program requires
between one and three bytes of memory. With a one byte instruction
the data on which it operates is stored in one of the processor
registers. A two byte instruction consists of the instruction first
followed by a one byte operand, this can be either a zero page address
or a data constant. An instruction occupying three bytes contains the

ADDRESS BUS

15 87 0 0
[PAGE [LOCATIONJ page O
N ., 255
256
page 1
512
513
page 2
768
769
xe]x] xrx]x[x]x -
W
65535

DATA BUS
7 0

INST OR
DATA

Fig. 2 — Relation between address, data, and memory location.

Instruction Memory Contents Function Start Address
$A9 INST +1
LDA#3$02
$02 oP +2
$8D INST +3
STA $0253 $53 OPLSB + 4
$02 BP MSB +5
CLC $18 INST + 6
$69 INST +7
ADC #$50
$50 OoP +8
9
STA 2855 $85 INST +
$55 oP +10
RTS $60 INST + 11

Fig. 3 — How a program is stored in memory.

instuction followed by a full sixteen bit address in the form; low order
byte followed by high order byte.

When the processor executes the program instructions stored in
memory it goes through a fixed instruction cycle, this gets the
instruction from memory, performs the instruction, and then repeats
by getting the next instruction, and so on until the end of the program.
There are three stages in the instruction cycle, they are;

1) fetch the instruction.

2) decode the instruction.

3) execute the instruction.
Fundamental to the operation of the instruction cycle is the internal
processor register called the program counter. The program counter
holds the 16 bit address of the next instruction, and the first stage in
the instruction cycle is to transfer the contents on the program
counter onto the address bus. The instruction located at that memory
address is then transferred to the processor instruction register. The
second phase of the cycle is to decode the contents of the instruction
register to generate the correct sequence of intermnal and external
signals to perform the execution stage of the cycle. The execution
phase of the cycle depends on the instruction and will include the
fetching of any operand bytes plus the manipulation of one or more
processor registers. After fetching an instruction or an operand byte
the program counter is incremented by one so that at the end of the
instruction cycle it contains the address of the next instruction and
the process is repeated.

Fig. 4 — Sequence of processor operations in executing an instruction.

Step 1 — program counter points to location of instruction by
placing the memory address on the address bus.

Step 2 — the instruction code is transferred from memory to the
instruction register where it is decoded.

Step 3 — the program counter is incremented to point to the operand
byte of the instruction in the following memory location,
this byte is placed in the accumulator. The decoded instruc-
tion then results in a specific operation being performed on
the byte in the accumulator.

Step 4 — The program counter is incremented to point to the next
instruction in memory and the sequence returns to step 1.

PROCESSOR

rc_]

STEP X X X X X X X X
Operand
1 Instruction 2
Operand
Operand

Address Bus

MEMORY

Instruction 1

Instruction 3

etc

Data Bus

+

DECODE

ACC

PC

<_J

STEP

Inst 1

Op

Inst 2

Op

Op

Data Bus

STEP

Inst 1

Address Bus

STEP

Address Bus

Fig. 4

Op

Inst 2

Op

Op

Inst 1

Op

Inst 2

Op

Op

Inst 3

THE ACCUMULATOR AND THE ARITHMETIC UNIT

The accumulator has no exact function, it is a general purpose
register. To move a byte of data from one part of memory to another it
must be temporarily stored in the accumulator. The accumulator is
also used to store the intermediate and final results of a logic or
arithmetical operation.

Data transfers between the accumulator and memory (since the VIC
is a memory mapped system this also includes 1/0) are very important
and account for about 40% of all the instruction used in a machine
code program. To move a byte of data from one memory location to
another requires two instructions:

LDA,M1 — Load accumulator with contents of first memory

location.

STA,M2 — Store contents of accumulator in second memory

location.

Memory locations M1 and M2 are accessed by one of a variety of
addressing modes, these will be looked at later in this section. Having
loaded a byte of data into the accumulator the processor can be
instructed to perform arithmetic or logical operations upon it. Only
about three percent of all instructions in a program are arithmetic or
logical operations.

Since the 6502 is an eight bit machine all the arithmetic and logical
operations are between two eight bit numbers. The arithmetic or
logical operation is performed in the ALU or arithmetic logic unit, this
requires that one of the operands is in the accumulator and the other
is in a memory location. The result of the operation is placed in the
accumulator. Placing the results in an eight bit accumulator causes a
problem when adding two numbers whose sum is greater than 255.
This is overcome by giving the accumulator a ninth bit, called the
carry. The carry bit, or flag, is one bit in the processor status register,
and is set when the contents of the accumulator exceed 255. This
applies to the performance of binary arithmetic by the processor, the
6502 is fairly unique in that it can also do decimal arithmetic. In this
mode each byte contains two binary coded decimal numbers,
numbers from O to 99 can be stored as a single byte. As in the binary
mode, the carry flag is set when the addition of two numbers gives a
result greater than 99. The processor is placed in the decimal mode by
a ""set decimal mode’’ instruction, SED, which sets another bit within
the processor status register.

There are two basic arithmetic instructions, ADC — which is “add
memory to accumulator with carry”, and SBC — which is "subtract
memory from accumulator with borrow"”. Both instructions can be
either binary or decimal in nature and can use a variety of addressing
modes to indicate the memory location.

The ADC instruction adds the value of the data in the memory
location, plus the carry from the previous operation, to the value in
the accumulator, storing the results in the accumulator. If the result
exceeds 255 in the binary mode, or 99 in the decimal mode, then the
carry flag is set, if the result is zero then the zero flag is set. An
example, if we want to add the two numbers, 25 and 189, and store
the result in memory location 10 {(decimal) we could use the following
sequence of instructions:

CLC 18 (this clears the carry flag)
LDA 25 A9 19 (Load accumulator with 25)
ADC 189 69 BD (Add 1889 to accumulator and carry)
STA 10 8D 0OA 00 (Store resuitin location 10)

The instructions in the left column are in mnemonic code, followed
by a decimal number or memory location. The same sequence of
instructions appears on the right as hexadecimal values. Addition of
two numbers where one or both have values greater than 255 needs a
process known as multiple precision addition, calling for the use of
the carry flag. Adding two sixteen bit numbers, requires two
additions. The carry is first cleared and the two lowest order bytes, (a
sixteen bit number would be stored in two bytes of memory) added
together. The result of this addition is stored in a memory location as
the low order byte of the result. Now the two high order bytes are
added, plus any carry generated by the first addition, the sum stored
as the high order byte of the result. Using this method numbers of any
size can be added together, whether the processor is in binary or
decimal mode.

Addition can be performed on signed numbers. Positive numbers
added to negative numbers, or two negative numbers added. The
sign is stored as bit seven of the highest order byte, a zero for positive
and a one for negative. Addition takes place as in ordinary arithmetic,
the only exception being that the carry flag for the highest order byte
is replaced by the overflow flag. This performs the same function but
records an overflow or carry from bit seven, rather than bit eight.
Negative numbers are stored not as ordinary binary numbers but as

two's complement, which is best described as the inverse of that
number minus one. All the ones become zeros and vice versa for all
bits, except bit one, thus binary five is normally 00000101 — in two's
complement form it become 11111011.

The SBC instruction subtracts the value of data in a memory
location (and borrow) from the value in the accumulator, storing the
result in the accumulator. Two's complement arithmetic is used
throughout. The borrow flag is the same as the carry flag used in
addition, whereas before an addition the carry flag is always cleared,
before a subtraction it is always set. The result of subtraction affects
the carry or borrow flag, it is set if the result is greater than or equal to
zero. Similarly for subtraction of signed numbers the overflow flag is
set if the result exceeds +127 or —127 for single precision seven bit
arithmetic. The SBC instruction can be used with either binary or
decimal numbers with both multiple precision and signed arithmetic.
To subtract two decimal numbers, say, 18 from 27 use the following
sequence of instructions, the decimal mode is used to illustrate its
function:

SED F8 {set decimal mode instruction)

SEC 38 (set borrow flag)

LDA 27 A9 27 (load accumulator with 27)

SBC 18 E9 18 (subtract 18 from accumulator and borrow)
STA10 8D 0OA 00 (store resultin location 10)

The instructions on the left are in mnemonic code, on the right in
hexadecimal, note that in the decimal mode the hexadecimal and
decimal numbers are the same.

The 6502 instruction set does not include instructions to perform
multiplication or division. Users requiring these functions must write
special subroutines to perform them, or use the subroutines within
VIC Basic. Multiplication is a process of repeated addition: 3 x 5 is the
same as 5 + 5 + 5. For large numbers this could be a lengthy process,
and programming tricks are required to minimise this. Division is a
process of repeated subtractions: 15/5 can be performed as the
following sequence, 156 —5 = 10, 10 — 5 = 5, 5 — 5 = 0, since three
subtractions were required, the answer is 3. As with multiplication,
programming techniques are needed to reduce the time taken to
divide large numbers.

Besides arithmetic operations the ALU can perform logical
operations between data in memory, and the accumulator. There are

four such instructions AND, BIT, OR and EOR. The AND instruction
performs a bit by bit logical AND operation between a memory
location and the accumulator, storing the result in the accumulator.
This operation can be used to reset or mask a single bit or group of bits
in a memory location. In the decimal mode each byte holds two digits,
the AND instruction can be used to extract one digit. Where there is a
zero in the operand, there is a zero in the result. To mask out the most
significant decimal digit stored in the bottom four bits, the
accumulator is ANDed with 00001111 or hexadecimal OF

LDA 25 A925 (load the accumulator with decimal 25)
AND OF (hex) 29F0 (AND the accumulator with 00001111 binary)
STA10 8D 0A 00 (store the result in location 10)

On running this program location 10 will contain 05, the 2 being
masked out and replaced by a 0. The BIT instruction is identical to the
AND, except that the result is not stored in the accumulator and only
the status register flags are set.

The OR instruction performs a binary OR on a bit by bit basis
between the contents of the accumulator and a memory location, the
result is stored in the accumulator. The main use of this instruction is
to set a bit or group of bits in a memory location, a logical 1 in the
operand field produces a 1 in the corresponding bit of the result. The
EOR or "“Exclusive OR instruction’ is identical to the OR, except that a
logical 1 appears in the result only if there is a 1 in the operand field,
and a 0 in the accumulator for the corresponding bit. The main use of
the EOR instruction is to produce the two complement of a byte.

10

ADDRESSING MODES

Every instruction in a machine code program contains information
on the position of the data on which that instruction will operate. The
same instruction can exist in several forms depending on where the
data is located and each of these forms is referred to as an addressing
mode. There are thirteen different addressing modes and most
instructions can be performed in more than one mode. The LDA
instruction can use one of eight different modes of addressing. The
thirteen address modes can be divided into seven basic modes and
six modes which are combinations of one of the basic modes and the
indexed addressing mode.

Implied

Accumulator

Immediate

Absolute

Zero page

Relative

Indirect

Absolute X indexed
Absolute Y indexed
Zero page X indexed
Zero page Y indexed
Indirect indexed
Indexed indirect

The simplest mode is Implied addressing, which is used exclusively
by single byte instructions operating on the internal processor
registers. In an instruction like CLC (Clear Carry} no data is accessed
therefore no address is required. It is implied that a register, in this
case the Status Register, is to be operated upon.

Accumulator mode addressing is used in instructions which
perform logical operations on data in the accumulator. This mode is a
version of implied addressing and all instructions are single byte.

Immediate addressing is used whenever the programmer wants to
perform an operation using a constant. To put a value of, say 25, in the
accumulator we would use the LDA instruction in the Immediate
mode. In this form of addressing the data is stored in the byte
immediately following the OPCODE.

11

Neither the immediate or Implied addressing modes use a memory
address where data is stored, and are of little use in operations with
variables. To address any location in memory would require a full
sixteen bit or two byte address stored in the Operand part of the
instruction. This address points to a memory location where the
variable upon which the operation being performed is currently
located, or is to be stored. This form of addressing is known as
" Absolute addressing’’.

A shortened form of absolute addressing can be used when the
memory location being accessed lies on page zero of memory. This is
the only case where the concept of paging has any importance in the
6502, page zero is just the bottom 256 memory locations. This is called
""Zero Page Addressing”’, and uses a single byte address to point to
the location of data within page zero. A two byte Zero page address
mode instruction is much faster than three byte Absolute addressing
and it is good practice to store all variables in page zero. When running
machine code programs on the VIC only the bottom 144 Bytes of page
zero should be used, storing data in locations above this will probably
cause the machine to crash. o '

A special form of addressing is used exclusively by branch and jump
instructions, known as ‘‘Relative addressing’”. In this addressing
mode the instruction is followed by a single byte Operand. This does
not specify an address as in zero page addressing, but a displacement
from the address where the branch instruction is stored. Since the
displacement must be either positive or negative, bit eight is used to
signify the jump direction, this allows the jump to be up to 127 bytes
forward or 128 bytes backward.

In some programs it may be necessary to have a computed address
rather than a fixed address, as in absolute addressing. This is done
using indirect addressing, instructions in this mode have just a single
eight bit address field which points to the effective address as two
bytes in page zero. The data address is thus not stored directly in the
Operand field of the instruction, but, indirectly in page zero, all the
indirect addresses are indexed except for the JMP instuction.

Indexed addressing uses the contents of one of the two index
registers as an offset to the address stored as the Operand part of the
instruction. The address stored in the Operand can be either an
absolute two byte address, or a zero page single byte address. This

12

gives a total of four different indexed addressing modes, two for each
index register. The primary use of indexed addressing is in the access
of successive memory locations used for the storage of a table or
block of data.

13

THE PROCESSOR STATUS REGISTER AND THE USE OF FLAGS

The processor status register occupies a very important position in
the system architecture of the 6502. It is an eight bit programmable
register, unlike the other registers and its function lies between the
control and register section of the processor. It is the only register
which actually affects the control logic. Seven of the eight bits are
used, and each bit, or flag, has a specific function.

Flags fall into three categories, those controllable only by the
programmer, those controllable by both programmer and processor,
and lastly those controlled solely by the processor. Only one flag falls
into the first catagory, the Decimal mode or D flag, occupying bit three
of the status register. This flag controls whether the processor
performs binary or decimal arithmetic. It can be set by a SED
instruction, after which all arithmetic is performed in the decimal
mode, until the D flag is cleared by a CLD or clear decimal mode
instruction. .

Three flags fall into the second category: Carry, Overflow and
Interrupt disable. The Carry or C flag is located in bit 0 of the status
register, it is modified either by the results of certain arithmetic
operations or by the programmer. The carry is also used as a ninth bit
during arithmetic operations or by the shift and rotate instructions.
The instruction used to set the carry flag is SEC, it can be cleared by
CLC.

The Overflow or V flag occupies bit six of the status register, and is
used during signed binary arithmetic to indicate that the result was of
greater value than could be contained within the seven bits of the
signed byte. The V flag has the same meaning as the carry flag, but
also indicates that a sign correction routine must be used if this bit is
“on", since the overflow will have erased the sign in bit sevén. The
programmer can only clear the V flag by using the CLV instruction.

The Interrupt disable, | flag, controls the operation of the
microprocessor interrupt request input, and is located in bit two of
the status register. Interrupts play a very important part in the VIC's
design, and each time there is an interrupt the | flag is set by the
processor. This stops the processor being interrupted by more pulses
on the IRQ line until the interrupt handling program has been
completed with a return note an interrupt instruction clearing the | flag.

14

The | flag can also be set by the programmer with an SE! instruction to
prevent the processor being interrupted, as during a precision timed
loop subroutine. At the end of such a program the interrupt line can be
returned to its normal function by clearing the | flag with a CLI
instruction.

The last three flags: Zero, Negative and Break, are controlled solely
by the processor. The Zero and Negative flags are either set or reset by
nearly every processor operation. The Zero or Z flag is set by the
processor whenever the result of an operation is 0, as when two
numbers of the same value are subtracted from each other. The
Negative or N flag is set equal by the processor to bit seven of the
result of an operation. One of its primary uses is during signed binary
arithmetic, if the N flag is set then the result is a negative number. The
Break or B flag is set by the processor during an interrupt service
sequence. The Z flag occupies bit one, the N flag bit seven and the B
flag bit four of the status register.

The seven status bits or flags in the status register each have a
meaning to the programmer at a particular point in the program.
Although the carry and overflow flags are used in arithmetic
operations the major use of flags is in combination with the
conditional branch instructions. This gives the programmer the
capability of incorporating decision making instructions within a
program, to test a flag. and, depending on the state of that flag, take
one or two courses of action. A conditional branch is functionally the
same as the IF... THEN GOTO... statement in Basic. There are a range of
these instructions performing different functions and testing
different flags. Anyone writing a machine code program must keep
track of the expected state of all flags at every instant throughout the
program. Failure to do this is one of the commonest causes of a
program not working or producing the wrong result. An example
would be failure to clear the carry flag before an addition. On odd
occasions it would have been set by a previous instruction, and thus
give rise to erroneous results.

15

BRANCHES, JUMPS AND THE PROGRAM COUNTER

To understand the use of branch and jump instructions the concept
of program sequencing must be understood, and its control by the
program counter. The program counter, or PC, consists of two eight
bit registers. Like the other registers they communicate with the
internal processor data bus, but the outputs are also connected to the
sixteen lines of the address bus. One of the PC registers is connected
to the bottom eight address lines and is called PCL, the other, the PCH
is connected to the eight high order address lines. Although two eight
bit registers, they function like a single sixteen bit register. It is the
program counter which controls the addressing of memory, by being
a program, or data address pointer and, as such it contains the address
of the next memory location to be accessed.

At the beginning of the program the PC must contain the address of
the first instruction. This is one of the functions of the operating
system reset software. It is also preformed by the SYS and USR
commands when entering a machine code program from Basic. The
instruction fetched from memory is stored in the instruction register,
to be decoded by the control logic. This process takes one clock cycle,
during which time the program counter is incremented by one 1o
point to the next memory location. The processor usually requires
more than one byte to interpret an instruction, this first byte contains
the basic operation and is known as the OP CODE. The following one
or two bytes, known as the OPERAND, contain either a byte of data or
the address of the data on which the operation will occur. An
instruction may require up to three sequential memory locations, the
program counter first points to the OP CODE which is fetched from
memory and stored in the instruction register. The PC is incremented
and points to the next memory location, the contents of which are
fetched and stored in the ALU, in a three byte instruction this will be
the low order address of the data. The program counter is again
incremented and the high order address fetched from the third
memory location. The processor then latches the two bytes of the
address onto the address bus via the ALU, fetches the data, and
performs the operation. Having completed the operation, which
usually takes about four clock cycles, the processor increments the
program counter to point to the next instruction and the process is
repeated. In this manner the program counter will continue to
advance until it reaches the maximum memory location, fetching
instructions and addresses.

16

A sequential program would lack a feature fundamental to
computing, the ability to test the result of an operation, and
implement various options based on the results of the test. Firstly
flags can be used to test the result of an operation, secondly the
contents of the program counter must be changed to point to the start
of a new program. The simplest way of changing the contents of the
program counter is with the JMP or “Jump to new location”
instruction. This as its name implies does not perform any tests on the
results of a previous operation. It simply loads a new sixteen bit
address into the program counter thereby forcing the processor to
start operating at the new address. The JSR or “Jump to Subroutine”
instruction is similar to JMP except that the current contents of the
program counter are saved on the stack to be restored on the
completion of the subroutine by an RTS, "“Return from Subroutine”
instruction.

There are eight different conditional branch instructions, they can
be divided into four groups, each testing the state of one of the status
register flags. The four flags tested by the conditional branch
instructions are: Carry, Zero, Negative and Overflow, one instruction
tests if the flag is set, and the other if it is clear. The two instructions
for the Carry flag are BCC or “Branch on Carry Clear” and BCS or
“Branch on Carry Set”. The Operand contains the address to which
the program jumps if the condition being tested is true. The
addressing mode used is unique to conditional branch instructions, it
is called relative addressing.

In relative addressing the new address is stored as just one byte,
which is added to the current contents of the program counter. To
enable the program to branch both forwards and backwards the
relative address can be either a positive or a negative number. The
fact that relative branch addresses are stored as a signed single byte
limits the maximum size of the branch to either 127 bytes forwards or
128 bytes backwards, this may seem a limitation but in practice it is
not.

The eight conditional branch instructions are:

BMI — Branch on Result Minus

} Testing the N flag
BPL— Branch on Result Plus
BCC— Branch on Carry Clear

} Testing the C flag
BCS— Branchon Carry Set

17

BEQ— Branchon Result Zero
} Testing the Z flag
BNE — Branch on Result Not Zero
BVS— Branch on Overflow Set }
Testing the V flag
BVC— Branch on Overflow Clear

Most operations involve the setting of one or more flags, but a small
group of test instructions are specifically designed to set flags for
testing by a branch instruction. The most commonly used is the
“Compare Memory and Accumulator” or CMP instruction. It allows
the programmer to compare a value in memory to one in the
accumulator without altering the value in the accumulator. If the two
values are equal the Z flag is set, otherwise it is reset. The N flag is set
equal to bit 7 and the carry flag is set when the value in memory is less
than or equal to that in the accumulator. The BIT instruction tests
single bits in memory with the corresponding bits in the accumulator.

18

THE STACK REGISTER AND ITS USE

The stack register is mainly concerned with the handling of
interrupts and subroutines. It is an eight bit register, its function is
identical to that of the program counter since it is an address
generator. It is used to point to an address in page 1 of memory,
(locations 256 to 511), known as the "Stack”. The stack is a set of
memory locations starting at 511 and filled downwards from that
location with a maximum size of 266 bytes. It is organised as a LIFO or
“Last In First Qut” structure, which means that the last byte of data
stored on the stack is the first byte to be accessed. Every time data is
pushed onto the stack the stack pointer is decremented by one, and
each time data is pulled off the stack, the stack pointer is incremented
by one. The addressing of the stack is independent of the program and
based purely upon chronological events. The stack is used as a
temporary data store, the most common data being re-entrant
addresses generated by subroutines and interrupts.

Every time a subroutine is called in a machine code program the
current contents of the program counter are saved. On returning from
the subroutine the program can be re-entered at the correct location.
Similarly every time the processor is interrupted the current address
in the program counter is saved before the processor performs the
interrupt servicing routine. A subroutine may call other subroutines,
requiring the storage of several re-entrant addresses in the stack. The
last re-entrant address stored is the first address reloaded into the
program counter at the end of the subroutine, hence the LIFO
structure of the stack. The calling of subroutines by other subroutines
is termed ‘‘subroutine nesting’’ and is a common occurrence in
machine code programs. The size of the stack in the 6502 limits the
user to 127 levels of nesting, usually far more than is needed. Basic
subroutines also use the stack for the storage of the return address
pointers and register contents.

A subroutine is called by a JSR or “Jump to Subroutine”
instruction. This pushes the current contents of the program counter
onto the stack. A location stored as the Operand field is then loaded
into the program counter. This causes the processor to jump to a new
section of the program and start execution from the location in the
program counter.

The return from a subroutine to the main program is accomplished
by he RTS or “Return from Subroutine” instruction. This loads the

19

return address from the stack into the program counter. It also
increments the program counter to point to the instruction following
the JSR. The stack pointer is also incremented to point to the next
subroutine address if any.

The stack can be used by the programmer as a temporary storage
location for data passed to a subroutine. The programmer needs a set
of instructions to allow him to put data onto the stack and read it
back. The current contents of the accumulator can be transferred to
the next location on the stack by the PHA or “Push Accumulator onto
Stack” instruction. Data can be read from the current location pointed
to by the stack pointer into the accumulator, by the PLA or “Pull
Accumulator from Stack”’ instruction. Both instructions
automatically cause the stack pointer to be incremented or
decremented by one. An example of data storage in the stack is saving
the contents of the processor status and index registers when a
subroutine is called. The contents of the status register can be pushed
onto the stack by the PHP “Push Processor Status on Stack”’
instruction and then transferred from the stack back to the status
register by the PLP “Pull Processor Status from Stack” instruction. To
save the contents of the index registers they are first transfered to the
accumulator and then placed on the stack. When writing any machine
code routine for the VIC which will be called from a Basic program it is
very important to first save the contents of the processor accumulator
and index registers on the stack. The contents of these registers are
then restored prior to returning to Basic. Failure to do this will result
occasionally in system crashes.

Normally the stack pointer points to a location in page one, the
location being automatically incremented or decremented by the
processor as required, but in some situations the programmer has to
be able to change the stack pointers contents. The stack pointer is
loaded by transferring the contents of the X index register to the stack
pointer with a TXS “Transfer Index X to Stack Pointer” instruction.
This instruction is used at the beginning of a program to initialise the
stack pointer, it is performed automatically on the VIC as part of the
power up reset routine. Re-initialising the stack on the VIC causes
problems, usually resulting in a crash and should thus be avoided. The
current contents of the stack pointer can be read by loading it into the
X index register with a TSX “Transfer Stack Pointer to Index X"
instruction.

20

THE INDEX REGISTERS

Having a fixed address in the Operand field of an instruction poses
problems when accessing a sequential block of data, such as a table or
an input buffer. One method would be to use a string of load
instructions in the form, load data from address 1 — perform
operation — load data from address 2 — perform operation and so on.
This is obviously highly wasteful of memory space, it would be more
efficient if this program was written as a loop. To do so would require
that the address stored as the Operand field of the load instruction is
incremented each time the program goes round the loop. In this way
the Operand address will always be pointing to the next byte of data
to be accessed. This method is useful, but, execution time is
considerably greater than in the straight line programming
technique, also it is often undesirable to use a self modifying program.

A more sophisticated approach is the use of a counter, the contents
of which are automatically added to the address in the Operand field
of the instruction. Such a counter is called an Index register. There are
two Index registers in the 6502, both are eight bit registers, labelled X
and Y. They are used by instructions in one of the indexed addressing
modes. The simplest is absolute indexed addressing, in this mode the
contents of one Index register is added to the address in the Operand
field of the instruction, giving a new address from which data is to be
accessed. The fact that the Index registers are only eight bit registers
limits the maximum size of data block accessed using indexed
addressing to 256 bytes. In practice the majority of tables are shorter,
it is not therefore a significant limitation. If longer tables are required
then programming techniques, such as indirect indexed addressing,
are used to overcome this limitation.

The Index registers are controlled and manipulated by a range of
special instructions. A number can be loaded to, or stored from the
Index register and a memory location, by the LDX, LDY and STX, STY
instructions. Similarly the contents of the Index registers can be
compared with a value in memory to test if a conditional branch
should take place by using the CPX and CPY instructions. The
contents of an Index register is changed to point to the next address
by increments or decrementing it by one. To count up, the instruction
used is INX or INY, to count down DEX or DEY. The remaining Index
register instructions allow the transfer of the contents of the
accumulator into one of the Index registers and vice versa. TAX and

21

TAY transfer the accumulator contents into X and Y registers
respectively and TXA, TYA transfer the Index register contents to the
accumulator.

In some programs it may be necessary to have a computed address,
rather than a base address with an offset, as in absolute indexed
addressing. This is done using indirect addressing, instructions in this
mode have just a single eight bit address field which points to the
effective address as two bytes in page zero. The data address is thus
not stored directly in the Operand field of the instruction but,
indirectly in page zero, all the indirect addresses are indexed except for
the JMP instruction. Two modes of indirect addressing are possible,
Indexed Indirect and Indirect Indexed Addressing.

Indexed Indirect addressing index register X is added to the
Operand zero page address. This points to locations where the sixteen
bit data address is stored. One of the major uses of this addressing
mode is in retrieving data from a table or list of addresses, as in polling
1/0 devices or performing string operations.

Indirect Indexed addressing the sixteen bit address pointer in page
zero is first accessed then offset by the contents of index register Y to
give the true data address. The location of the pointer is fixed,
whereas in the indexed indirect mode it is variable being offset by the
contents of index register X. Indirect indexed addressing combines
the advantage of an address that can point anywhere in memory with
the offset capability of the index register. It is a particularly powerful
method of accessing the nth element of a table, providing the start
address is stored in page zero.

22

DATA MODIFY INSTRUCTIONS

A small group of instructions are not associated with any particular
processor register. They are classified as read/modify/write
instructions. They all read data from a memory location or
accumulator, modify it in a particular way and store the modified data
back into memory or the accumulator. These instructions perform
four different data modifications, shift, rotate, increment and
decrement.

A shift instruction is one which takes the contents of the
accumulator or a memory location and shifts all bits one bit to the left
or right. An example is the LSR-Logical Right instruction, here the
data in the accumulator or memory is moved one bit to the right, bit 0
is placed in the carry flag and bit seven set to zero. Similarly the
ASL-Arithmetic Shift Left instruction moves the data one bit to the
left, bit seven is stored in the carry flag and bit O set to zero. Repeated
shifts in the same direction will eventually result in the entire byte
being set to zero. Herein lies the difference between a shift and a
rotate instruction. In a rotate instruction the contents of the carry flag
is stored in the bit emptied by the shift, thus no data is lost in a rotate
instruction. The ROL-Rotate Left instruction shifts the contents of the
accumulator or addressed memory left 1 bit with the carry stored in
bit O and bit 7 stored in the carry flag. With ROR-Rotate Right instruction
the data is shifted right 1 bit with bit O shifted into the carry and the
carry shifted into bit 7. The shift and rotate instructions have a unique
form of addressing, in addition to the normal forms, and is known as
accumulator mode addressing. It indicates that the instruction is to
operate on the accumulator rather than on a memory location.

Besides shift and rotate the contents of a memory location can be
incremented or decremented. INC-Increment Memory by One adds
one to the contents of the addressed memory location. DEC-
Decrement Memory by One subtracts one in two’s compliment form
from the contents of the addressed memory location. The main use of
increment and decrement is with counters such as table pointers.

23

INTERRUPTS AND INITIALISATION

The processing of interrupts is important for the operation of the
VIC system. As seen in Section 4 all peripheral 1/0 is interrupt driven, a
knowledge of interrupts is thus required by anyone using the user
port or the other 1/0. There are three input lines which can cause the
processor to halt on completion of the current instruction. On receipt
of one of these inputs the program counter is stored on the stack and
the processor causes the program to jump to an interrupt servicing
routine at an address pointed to by the contents of one of the interrupt
vectors. These three lines are Reset, Interrupt Request or IRQ, and
Non-Maskable Interrupt or NMI. All three lines can be used by external
devices attached to the VIC memory expansion port. Their function
can be controlled by the programmer thanks to the RAM vectored
address table which allows user written routines to replace the
system routines governing interrupts and reset.

The only way a programmer can change the sequence of operations
is to load a new address into the program counter. If this were true
then an external event could not effect the program sequence, unless
the program was written to periodically check for an input. Most
inputs are asynchronous, meaning that for an input to occur at the
same time as the program is checking for inputs is extremely unlikely.
If an input pulse occurred just after an input check, then not until the
next check would that pulse be input to the computer. During the
interval between checks; data at the input may have changed resulting
in the loss of information. To overcome such a data loss the processor
could be programmed to wait for the data, but this would mean the
processor spending most of its time doing nothing.

The problem of having the processor wait for an input is overcome
by having a special line signal the processor whenever an input
occurs, an interrupt. This considerably simplifies programming,
making it unnecessary to repeatedly use an input testing subroutine
or have the computer wait for an input. The two interrupt lines used to
signal to the processor that an input is present are the IRQ line and the
NMI line. By pulling an interrupt line low for at least 20 microseconds
an input device can signal that it wishes to send data to the processor.
This forces the processor to finish its current instruction, store the
program counter and status register on the stack and jump to a
memory location pointed to by the interrupt vector. There are two
interrupt vectors that for the IRQ line are located at 65,534 and 65,535,

24

for the NMI line at 65,530 and 65.531. The reset vector is located at
65,5632 and 65,533.

The processor could be interrupted before it was able to retrieve
data from an interrupt initiated input. To prevent this the programmer
can disable the IRQ line and prevent further interrupts by setting the |
flag in the processor status register. This is done by the first
instruction in the interrupt handling subroutine, SEl-Set Interrupt
Disable. A CL! — Clear Interrupt Disable instruction clears the | flag
and allows the processor to be interrupted as normal. Having
obtained data from the input the interrupt software can process it for
use by the main program or respond with an output from an 1/0 port.
Control is returned to the main program by the RTI-Return from
interrupt instruction. This pulls the contents of the processor status
register and program counter off the stack restoring the processor to
its pre-interrupt state. The NMI line can not be disabled with
commands to the processor and will therefore always generate an
interrupt irrespective of the state of the IRQ line and the Status
register | flag. An interrupt on the NMI line therefore has a higher
priority than an input on the IRQ line. The Reset line takes priority over
both the interrupts causing all the system pointers to be reset and a
Basic warm start initiated. If the Reset RAM vector address is changed
then the user written reset routine which it points to must clear the
processor registers, and reset the stack pointer to the beginning of the
stack, before jumping to the entry point of the main program.

The VIC has two sources of interrupt, one from each of the
peripheral 1/0 chips and either one can interrupt the processor. The
interrupt line from one 1/0 chip (VIA No.2) is connected to the IRQ line
(a timer on this chip generates regular interrupts which control
update of the clock variable Tl and keyboard scanning). The interrupt
from the other 1/0 chip (VIA No.1) is connected to the NMI line and is
used to generate a system restart when the Restore key is pressed.
Each 1/0 chip has two interrupt inputs and one output connected to
the IRQ or NMI lines. The function of these 1/0 inputs is dealt with in
the sections on the 6522 VIA chip and the system 1/0.

An interrupt sequence can be created by the programmer without
an input being present in the IRQ line, by use of the BRK — Break
command. This instruction performs a software interrupt and causes
program control to be transferred to the address stored in the
interrupt vector. The main use of this instruction is in debugging a
program, however, it calls one of the interrupt routines. lts use on the

25

VIC is not recommended. For VIC users a similar function is provided
in the machine code monitor with none of the attendant problems of
the BRK instruction.

26

MACHINE CODE ONTHEVIC

The VIC has an advantage over many other small micro computer
systems in that it can be programed in both Basic and machine code.
this gives the programmer the powerful option of using machine code
subroutines in a Basic program. The VIC normally runs in the Basic
mode and there are six ways of accessing the machine code
environment. The first two use commands in Basic, these are, USR
and SYS. Both commands access a machine code subroutine whose
address is specified in the command or in a specific page zero
location. The next four methods involve adding machine code
subroutines into the operating system.

1 — the Basic command USR(X) transfers program control to an
address stored in locations 1 and 2, this address is user definable and
will be the start of a machine code subroutine. The value X specified in
the command is a parameter for use by the subroutine, this is
evaluated and placed in floating accumulator No.1 starting at location
$0061. A parameter may be returned by placing it in the floating
accumulator and providing it is in the correct format then this value
will be assigned to the parameter variable.

2 — the Basic command SYS(X) causes program control to jump to
a machine code subroutine starting at address location X, where X is
either a variable or a constant value equal to the decimal start
address. Parameters can be passed between the Basic program and
the machine code routine using POKE and PEEK commands to place
or read values from specified memory locations.

3 — if the machine code routines are located in ROM memory and
start at memory address No.AOQO then the VIC allows system control
to jump to this location rather than the normal Basic interpreter when
the machine is switched on. This is very useful since it allows the user
to change the VIC system. This can be either adding extra commands
to Basic, changing the 1/0 operation using the ROM and RAM jump
vectors or simply bypassing the Basic and operating system software
and replacing it with special custom software (this is commonly done
for cartridge games).

4 — add a program into the interrupt servicing routines, these are
called sixty times a second by the keyboard scan interrupt signal. This
method for example allows the scanning of 1/0 ports for an input, or
selectively disabling certain keys on the keyboard. Any situation

27

where a program must be run concurrently with the main program
could use this method.

5 — involves inserting extra code into the CHARGOT subroutine
which gets each line of Basic from memory prior to its execution by
the interpreter. By intercepting each line of Basic before it is executed
new Basic instructions can be added. The instruction being
performed by a user written machine code subroutine. Both the
method of inserting code into the interrupt routine and the addition of
extra code into the CHARGOT subroutine will be dealt later with in
full.

6 — the RAM vector address table can be used to insert code into, or
replace, any one of the Basic or system routines -accessible through
this table. This is similar to method 4 and could be used to reassign
the functions of the interrupt lines or change the peripheral 1/0
handling routines.

The main reason for using machine code subroutines is that Basic is
too slow for many purposes, especially when using the 1/0 ports or in
special purpose display functions. A machine code routine is more
than 100 times faster than the same program written in Basic.
Another reason for using machine code is that one may want to
change the operating system or use some of the operating system
subroutines.

A machine code program which is loaded into RAM memory is best
located at the top of memory. This area is used by Basic to store
character strings, and to avoid these overwriting the machine code
program the top of memory pointers must be changed. The top of
memory pointers are set during power up diagnostics to the highest
usable RAM location. The location of the top of memory and therefore
the values stored in the top of memory pointer bytes depends on
whether the VIC is fitted with any extension RAM. By lowering the
value of these pointers a block of memory can be reserved exclusively
for use by a machine code program. The operating system will regard
the new top of memory pointers as containing the highest memory
location usable by Basic. The pointer is stored as the low order byte in
51 and the high order byte in 52. As an example the following
commands will lower the top of memory to location 4096:

POKE51,0 : POKEb2,16

POKE 55,0 : POKE 56,16

CLR

28

Locations 55 and 56 are the top of strings pointers and must be set
equal to the top of memory pointers at the start of the program, the
CLR command resets all the variable pointers thereby clearing all
variables used previously in the program. Care should be taken when
locating machine code programs in RAM memory space that the
memory area used is not also allocated to either video memory or
character generator memory.

Of the two Basic commands used to call a machine code subroutine,
SYS and USR, by far the most powerful and flexible is SYS. With the
SYS command one simply specifies the subroutine starting location,
thus if it starts at location 5000 it can be called with SYS 5000.
Variables can be transferred between a Basic program and a machine
code program by using PEEK and POKE. These read or write single or
multiple byte values into memory locations allocated for the purpose
and accessed by both programs. Transferring variables in this manner
is easier than using the single floating point variable provided for the
USR function. It also allows the transfer of more than one variable
which USR does not. The only requirement with a SYS subroutine is
that the last instruction in the subroutine is a RTS — return from
subroutine, this automatically returns control to the Basic program.

The easiest way of entering a machine code program is to
incorporate it into the Basic program using a simple loader, on
running the program the loader POKES the values byte by byte into
the correct locations. Another way is to use the machine code monitor
which is part of the Programmers Aid ROM pack, a summary of all the
commands in the monitor are given in Appendix 6. The monitor
allows machine code program to be directly written into memory
using hexadecimal code. It also allows programs to be saved and
loaded onto tape in machine code format. To make the writing of
machine code programs easier and avoid the necessity of hand
encoding, a simple assembler and disassembler are included in the
monitor. The monitor saves a machine code program by saving the
block of memory where the program is located, far quicker than a
corresponding Basic loader.

The only drawback with using the monitor to save and load a
machine code program is that it will require a two part load, the first
to load the machirie code and the second to load the Basic program
calling the machine code routine. The Basic program could be saved
by the monitor together with the machine code, by saving the entire
contents of user memory from location No. $0400 up. Generally it is

29

1a r

PR EE S EEES R ES P L ERE R ESER SRR L L

26 REM #BRSIC LORDER FOR MACHIMNE COLE

38 F
48 R
188
185
118
1268
138
148
156
2EE5
R85
3668
231
P20
e S 5
5048
2a50
268

Py o= 20 L0 O

EM #ROUTIME CEXAMFLE CODE OHLY:
EM o o R R ok e
DRATA Z843: REM $#CODE START LOCATION
FEM ##MACHIME CODE M HEXARDECIMAL
DATA 42.38.48,8R.42
DATA A9.132.28.05.E2.
DATA A9.11.28,D8.E3,
DATH AS.55.F0.83.A%,
DATA &E&, AR, 58, AS. aa.
DATA*: REM #%EMD OF IDDE

Fd.

~§ L

e 3

=4,
5
)

[R b} '..ﬂ
f' ¥ L.ﬂ !..ﬂ

D,
L

ﬂ", . _T_l

o
b

FEM ##THE FOLLOMWING LINES ARE THE ERSIC
REM *#LOADER PROGREAM.

RERDL

RERDAF

C=LEMCHF

IFA$F="#"THENZ2140
IFCC10RC:ETHEMR 1 38
A=ASCCA$F) -43
E=ASCIRIGHT#CA% . 12048
M=E+7# (B30 - 0=208] LeRCA+THRCRSB 00
IFH<BORM 2SS THENS 1 360
POKEL .M

L=L+1

GOTOSEz28
PRINT"EYTE"L"=L"RA$"] 7277
EMD

30

best to use a Basic loader for short machine code programs which are
called by the main Basic program. Longer machine code subroutines
and machine code programs which stand alone and are not called
from Basic are best saved using the monitor.

Another method of storing machine code programs is to store them
within a Basic program as REM statements. To do this the machine
code program must first be split into blocks, each block being less
than 80 bytes long. Each byte of the machine code routines is stored
as a character in the REM statements. The REM statements are stored
as the first few lines of the Basic program. Each statement is first filled
with dummy characters, the number of characters in each statement
depends on the length of the block of machine code to be stored in
that statement. The machine code monitor is then used to find each
REM statement as it is stored in memory and replace the dummy
characters with the code value for each byte in the machine code
block. When the program is listed the REM statements will appear as
a seemingly random collection of ASCI| characters, each character
however represents a byte of the machine code routine. When writing
a machine code program to be stored in this way care should be taken
to ensure that no absolute jump addresses are used within a block,
this ensures that the routine is relocatable. Care should be taken to
ensure that jump addresses from the main calling routine are suitably
modified to allow for the six byte gaps in the program required for
storage of line number, link address, command token and terminating
0, and the location of each routine.

31

WRITING MACHINE CODE PROGRAMS

The prospect of writing a machine code program even a small one
may seem fairly daunting, but providing one uses an orderly and
disciplined approach to the problem it need not be difficult. A machine
code program differs from Basic in the approach taken to its writing.
Whereas a rough Basic program can be written and then polished up
by inserting and changing lines, a machine code program must be
written as the final version, any changes often necessitate rewriting
and assembling the whole program. Machine code unlike Basic code
is dependent on the exact position of instructions in memory. Adding
a couple of instructions into the middle of a program means changing
most jump, branch and data addresses. Machine code programs also
require far greater attention to details like current flag status,
programs must be very carefully planned before they are written.
Unless this is done, writing a machine code program will require far
greater effort than is necessary and the product far more prone to
error. It is strongly recommended that before writing any programs in
machine code yourself, you study some 6502 machine code routines,
try to determine why the code was written in a particular way and
what it does.

Stage one in planning a program is to define what the program IS
required to do, then break the problem into a series of steps. To
demonstrate this consider the following example, to display all the
ASCI| characters on the screen.

Set the screen location pointer LOC to start of screen, address
32768 — set the ASCII character value CHAR to zero — store character
code CHAR on screen at location LOC — increment LOC — increment
CHAR — if CHAR is greater than 255 then all characters have been
displayed and program ends, if not then go back and display next
CHAR.

From this description we have defined that two variables CHAR and
LOC are required, also the program structure requires a loop with a
conditional test. For a short program like this a written description is
not really required since one can easily remember what one wants the
program to do. For longer programs it is an essential part of the
process. From the written description one can construct a flow
diagram such as the example in Figure 6. The flow diagram can be
regarded as a pictorial version of the written description and as a
result simpler to follow.

32

33

C =
1

CHAR =0

LOC =0

Store CHAR in LOC + 7680
COLOUR in LOC + 38400

Increment LOC

Increment CHAR

Yes

o

initiat Version

Fig. 5 — Preliminary flow diagram for example routine.

For long programs the flow diagram and written description can get
very involved and confusing. It is good practice to split such a
program into a series of self contained blocks or subroutine modules.
Each module is then treated as a complete program, making program
writing and debugging easier. The flow diagram shows the logical
pathways through a program and most logical errors can usually be
detected at this stage, saving a considerable amount of progarnming
time.

Having drawn a flow diagram the next stage is the construction of a
table of variables and locations of system subroutines called. In the
example no system subroutines are used but two variables are
required:

LOC — pointer to location in screen memory where character is to be
stored.

CHAR — Value for ASCIil character to be displayed on screen.

It is important that the table contains all variables required, since
when writing the program exactly the right amount of space in
memory must be left to contain them.

Having defined the logical flow of the program, the variables used
and any system subroutines called, a start can be made on writing the
program code. Probably the best way is first to draw an expanded
version of the flow diagram. Breaking down each logical step into a
series of substeps corresponding to a machine code instruction. In
Figure 6 notice that the variable LOC is now stored as the contents of
the X index register. Indexed addressing being the easiest way of
putting data into successive memory locations. Also the index
register (i.e. LOC) is loaded with 266 and decremented, rather than 0
and incremented as in the original flow diagram, since it is easier to
test for zero than for 255. It should be noted that the coding of this
example is not the optimum for either speed or compactness but
rather for clarity so that the purpose of each command is clearly
visible.

Having laid out the program in flow diagram form the next step is to
write the actual code which will be used by the machine. There are
three ways in which this can be done, the choice of which method is
used depends on equipment available and the size of the program.
The first method is to write the code by hand using a coding form
using the instruction mnemonic or operand address/value in the
opcode column, see Figure 7. Code written and assembled by hand
canh best be entered into the VIC memory by a Basic loader program.

34

o)
|

Load acc with 255

I

Store acc in CHAR

|

Load IndexX Reg with 255

:

> Load acc with CHAR

;

Store ascc in 7680 X
3 in 38400, X

!

Decrement CHAR

!

Decrement Index X

Final Version
bbb

Fig. 6 — Expanded flow diagram for example routine.
35

The second method again involves writing the code in mnemonic and
label form by hand on a coding form, the assembler which is part of
the monitor on the VIC Programming Cartridge is used to assemble
the code and directly enter it into the VIC memory. The third method
is best used for very long machine code programs and involves using
a PET computer system (a 32K minimum with disks and printer) on
which to write and develop the code. The code is written using the
editor program in the assembler package, this creates a source code
file on disk, the assembler uses this file during assembly to create an
opcode file on disk which can be loaded into memory using the loader
routine.

For hand assembly and coding of a program it Is advisable to use a
coding form such as that shown in the example, it helps to
considerably reduce the number of errors occuring at this stage. On
the first page of the coding form should be written a list of all
variables, 1/0 locations and system subroutine entry points used.
Each variable being assigned the number of bytes of memory which it
will require. Most will be single byte but some will be two or three
byte precision and in the case of character variables or data buffers
memory required could be large. When storing a multiple byte
numerical variable it is good practice to store the bytes in fixed order,
with the least significant byte in the first location and the most
significant byte in the last location. It is easier this way to keep track of
which part of a variable is being dealt with. Also index registers can be
used to access successive bytes of a variable in the same order that
they are processed.

Program variables can be stored in any part of RAM memory not
occupied by either programs or system variables. For maximum
speed and reduced program size variables should be stored in page
zero of memory, the bottom 255 bytes. On the VIC page zero is
currently occupied by system variables. This area can be utilised if the
memory locations used are carefully chosen. If Basic is not used, then
the entire section of page zero used by the Basic interpreter for
variable storage (locations O to 143) is available to the programmer.
The remaining part of page zero is used by the operating system and
may or may not be required by the machine code program. If both
Basic and machine code are to be used together in the same program
then the number of page zero locations available is limited (locations

36

eroanam ___ DISPLAY

DATE E‘ El !! PAGE l
M‘;:MELS:I OPCODE{ LABEL AD‘ z N‘L(:AGI‘ o)v|cvee COMMENT
03 | 40] — |cmr | — VARABLE FOR ASCII CHARACTER
V| A9 [Diseuay| (DA | # | 255 START — SET uP LooP CouNt
2| FF ~ AND CHARACTER VALUE
1[8D STA |A8S| cuAR INTIALISE 'CHAR®
4} 40 -
5103 —
s| A2 LDX {# | 25§ SET INDEX REG = 2855
7| FF ~
s| AD |~vexcil| (DA | a8 | cuae Ger ‘cnaR’
5|40 ~
Alo3 ~
e 9D STA [AesX|$iE0O, X SToRE AT START OF ViDEo RAM
c|l oo — + INDEX
ol 1E —
£l A9 LDA # | o3 SET CoouR = RED
Flo3 —~
50| o> STA X | $%00, X STORE Coouk_IN_Cocouk RAM
‘| oo - AT $9600, X
2] 946 —
31 CE DEC | A8s| cwAR Pur NEXT ASCII CHARACTER
«| a0 — v ‘enpe’
5103
61CA DEX | mr x POINT To NEXT SCREEN
71Do BNE | ReL | nexrome LOCATION — LAST CHARACTER ?
o| EF ~
ol 60 RTS _|me END _AND RETURN FRoN SuBLouTmE
A
[
c
]
E
F

Fig. 7 — Hand coded program of example routine (note this is the simplest
though not necessarily the best way of writing this program).

37

87 to 96 are best). If a larger section of page zero memory is required
then the existing contents should be relocated to a protected part of
memory before the machine code routine is run and restored at the
end of the routine.

Using the second expanded flow diagram one can start writing the
code onto the coding form using the instruction mnemonics. The first
step is to enter the starting location of the program into the address
column, then enter the first instruction into the mnemonic column.
The addressing mode of the instruction should be entered into the
relevant column. This is important since one must be able to calculate
how many bytes are required by that instruction, to determine on
which line (i.e. at which address) the next instruction should be
entered. The label column will contain an entry only if that address is
the start of a subroutine or the destination of a jump or branch
instruction. On the flow diagram the position of labels is indicated
where an operation has more than one entry or exit point. The label
used can be any name but preferably one descriptive of the function of
the subroutine or loop. In the example the beginning of the program is
given the label DISPLAY and the entry point of the loop is called
NEXTCHAR. Entries in the operand column will only be required for
instructions referencing other locations in the program and will
consist of symbolic labels and variable names. As program code is
entered on the coding form the comment column should also be
completed. Either with simple references to the flow diagram or a
more complete description. At a later date the function and logical
flow of the program can thus be easily followed without relying on
memory.

If the machine code routine is to be called from a Basic program
with either a SYS or USR command then it is very important that the
contents of the processor registers are saved before the routine is
executed and then restored at the end of the routine. This is most
easily done using the stack. The first few instructions of the routine
push all registers onto the stack and the last instructions restore
register contents by pulling the correct values off the stack.

Once written, the program should be checked for logical errors,
before being assembled. It will involve less work if errors are detected
prior to assembly. Assembly of short to medium length programs is, in
the absence of a full assembler running on a PET, best done with the

38

spot assembler function of the monitor. Full details of the monitor
functions are given in Appendix 6. The process of hand assembling is
done, in the absence of a monitor, In two stages, the first consists of
using the instruction set list to obtain the opcode value for each
mnemonic with the specified addressing mode. This hexadecimal
value is entered into the opcode column of the coding form on the
same line as the mnemonic. If the addressing mode is other than
“implied” or “‘acumulator” then the following one or two bytes will
be used to store an address or a value specified in the operand
column. [f the addressing mode is immediate, then the operand
column contains a hexadecimal value which is transferred to the
opcode column on the line following that of the instruction code.

The number system used must always be noted, the conventions
are that a number prefixed with a % is in binary format, with a $ in
hexadecimal format and if no prefix is given then in decimal format.
Convention also dictates that an instruction in the immediate mode is
identified by a No. sign in the address mode column, all other address
modes are just an abbreviation of the name. For all other modes the
symbol contained in the operand column will correspond to either a
label or variable. If a variable, then the address of the variabie can be
obtained from the variable table on the first page of the coding form. If
the instruction is a jump or branch then the addressing mode used
will transfer program control to another section of the program, the
operand column will thus contain a label. Since a label needs the
calculation of a jump address it is left until the second part of the
assembly procedure. It should be noted that the 6502 requires that all
addresses are stored in the form “least significant byte'" first, then
“most significant byte” thus address 0340 hexadecimal is stored as
4003.

At the end of the first stage of the assembly process, the opcode
column on the coding forms should contain a list of hexadecimal
values, one for each location in memory. The exceptions being jump
and branch addresses which are calculated in the second stage. Jump
addresses pose no problem since they are stored in either indirect or
more commonly absolute mode. Their entries in the opcode column
can be obtained from the address of the relevant label. The
conditional branch instructions all use relative addressing, where the
branch, either forward or backward, is calculated from the location of
the branch instruction rather than a fixed location in memory. It is the
offset from the current location, which can be up to 127 bytes away,

39

either forward or backward, which must be calculated by the
programmer. Great care should be taken with this, any error will
cause program control to be transferred to the wrong place, with
resultant errors or program crash. To calculate the value for a forward
branch one counts the number of bytes from the location of the
branch instruction, to the location of the label in the branch operand
column, and subtract 2 from this value. If the branch is backwards
then the offset is calculated by counting the number of bytes from the
branch instruction to the label, then adding 1 and subtracting from
255. The result when converted into hexadecimal can be stored in the
opcode column after the branch instruction.

Once all jump addresses have been calculated and a complete list of
opcode values obtained the program can be entered into the
computer. Before this is done it is advisable to recheck the program,
especially the opcode listing for errors (make sure that you can
distinguish between 8 and B or A and 4). The opcode listing is then
entered into the VIC using either a Basic loader or the machine code
monitor. Once entered, the program should be saved before it is run
since it is very rarely that a machine code program runs perfectly first
time. With the aid of the monitor the contents or memory should be
checked against the opcode listing for any program entry errors. If any
are found they should be corrected and the program resaved. One can
then try running it. If there is a program error it will probably crash the
machine, if so reload the program and the monitor and carefully
recheck the logic flow, the coding and the contents of memory. in my
experience the three most common causes of fatal program errors are
— entry errors, coding errors, and wrongly calculated jump and
branch addresses.

The best way of detecting errors is to systematically work through
the program inserting a break instruction at points where program
failure may have occurred. This will cause the program to return to the
monitor, allowing the contents of variable locations to be checked
and gradually isolate the fault to a small section of code. Another
way of isolating errors is to run the program from different locations,
though this does require a careful choice of entry points. Having
detected and removed any fatal errors one may find that the program
still does not run properly and produces strange results. Non fatal
errors are most commonly caused by either a mistake in the basic
logic flow, ignoring the current flag status, using the wrong variable,
and quite commonly using the wrong branch instruction.

40

Successful machine code programming is not difficult, it requires
just a strict adherance to a method and constant attention to detail
plus plenty of practice. The methods outlined above should enable
VIC users to expand their machine’s capabilities by using machine
code subroutines.

41

44 — Vic Memory Map

47 — Vic System Variables

50 — Table of System Variables

60 — Vic User Memory

65 — Data Storage

71 — Basic and Operating System Software
73 — Table of System Subroutines

90 — User Callable Kernal Routines

2 VIC SYSTEM SOFTWARE

42

$FFFF

$DFFF

$BFFF

8K

KERNAL
ROM

8K

BASIC ROM

Expansion 1/0 2

Expansion 1/0 1

Colour RAM

6522 No1& No2

8K

EXPANSION
ROM/RAM

6561

4K
CHARACTER
GENERATOR
ROM

$OFFF

$7FFF

$5FFF

$3FFF

$1FFF

$0000

43

8K

EXPANSION
RAM/ROM

8K

EXPANSION
RAM/ROM

Screen RAM

8K

EXPANSION
RAM/ROM

4K RAM

3K
EXPANSION
RAM

1K RAM

Fig. 8 — VIC memory map.

$9C00
$9800
$9600
$9100

$9000
$8FFF

$8000

$1FFF
$1DFF

$OFFF

$03FF
$0000

VIC MEMORY MAP

The 6502 microprocessor used in the VIC is capable of accessing up
to 64K bytes of memory, this memory space is divided into blocks
having a specific function. On the basic VIC only 29K of the available
64K is utilised, the remainder is available for user expansion using
gither ROM or RAM memory or even specialised 1/0, all accessible
through the memory expansion connector at the rear of the machine.
The division of the memory space into blocks with different functions
is shown in Figure 8. An understanding of the function and location of
each block is essential if full use is to be made of the VIC.

1 — System variables — Hex $0000 to $03FF — Decimal 0 to 1023
— The first 1024 bytes of RAM memory are utilised by Basic and the
operating system for the storage of system variables. The VIC system
configuration and/or its mode of operation can be changed by placing
values into specific locations in this section of memory.

2 — User RAM memory — Hex $0400 to $7FFF — Decimal 1024 to
32,767 — This 31K block of addressable memory can be divided into
four sub sections the first of 7K length and the remaining three
sections of 8K length. The first sub section consists exclusively of
RAM memory it is made up from the VIC's built-in 4K user memory
which extends from location $1000 to $3FFF plus the standard 3K
expansion RAM which goes from location $0400 to $OFFF. If there is
no other RAM memory expansion then the top 512 bytes of the first
section of RAM memory $1EQO to $1EFFF are used as the screen memory
(if the High Res mode is used then in addition to the screen memory a
4K block of BAM is required for the programmable character
generator, see the section on the 6561 for details). If there is more than
7K of user RAM in the system then the screen memory is moved to
start at $1000, decimal 4096. The three 8K sections of user memory
can be either RAM or ROM and are completely free for user programs
and data with the exception of the screen memory.

3 — Character Generator — Hex $8000 to $8FFF — Decimal 32,768
to 36,863 — The character generator is a 4K ROM which contains the
pattern of dots used to display each of the 255 valid VIC ASCII
characters on the screen. The contents of the character generator will
depend on which language version of the VIC you possess, there are (at
the time of writing) three versions. The programmer does not need to
bother about the character generator in normal character display

44

mode. However, in High Resolution display mode the character
generator is not used and therefore to display alphanumeric
characters in this mode the data for the desired character must be
transfered from the character generator to the block of RAM used for
the user definable character generator.

4 — System 1/0 and Control Interfaces — Hex $9000 to $912F —
Decimal 36,864 to 37,167 — All the system input, output and control
lines are memory mapped, this means that an 1/0 line can be turned
on or off simply by changing the corresponding bit in a specific
memory location. The internal registers of three /0 chips are
accessable within this block of memory, they are two 6522 VIA chips
and the 5621 VIC chip, the latter controls the operation of the video
display. An understanding of the operation of these three chips is
essential if any of the many interfaces between the VIC and external
devices are to be used, consequently two complete sections of this
book are devoted to these devices.

5 — Colour Memory — Hex $9400 to $95FF — Decimal 37,888 to
38,399 — Each of the 506 bytes in this block of memory determines the
foreground and background colour of the corresponding byte in the
video memory. It should be noted that if there is more than 7K of user
RAM n the system then the colour memory starting address is moved
up to $9600, decimal 38,400.

6 — ROM Expansion Memory — Hex $A000 to $BFFF — Decimal
40,960 to 49,151 — This 8K block of memory is designed for use by
programs stored in ROM and contained in a ROM/RAM pack plugged
into the VIC memory expansion port. The VIC operating system
allows a machine code program, starting at location $A000, to power
up directly into that program on switching on the machine, rather
than into Basic.

7 — VIC Basic Interpreter — Hex $C000 1o $DFFF — Decimal 49,152
to 57,343 — The interpreter translates a high level Basic program, step
by step into a series of machine code routines, these perform the
function required for each Basic command.

8 — VIC Operating System Kernal ~— Hex $E000 to $FFFF —
Decimal 57,344 to 65,535 — The operating system' controls the
functioning of the VIC system, such as initialisation on power up,
communication with peripheral devices, screen display and editing

45

etc. The operating system normally works in conjunction with the
Basic interpreter but the routines within it can be used by any
machine code program requiring the operating system functions.

46

VIC SYSTEM VARIABLES

The entire block of memory from location 0 to 1023 is reserved for
use by the VIC system software, it is used to contain system variables,
temporary data storage, and input/output buffers. This memory area
is accessable to the user via PEEK and POKE commands in Basic, or
simple load and store commands in machine code (locations 256 to
511 contain the processor stack, this should not be accessed except
by processor stack commands in machine code). User accessability of
this area of memory is important since many interesting and usefui
operations can only be performed by reading or changing the
contents of one or more locations within this bottom 1K of memory.
The function of each location can be seen in Table 1, the programmer
should study this very carefully before attempting to use or modify
any of the variables. The memory area used by the VIC for variable
storage can be divided into seven distinct sections each with a
different function and used by a different part of the system software.

1 — Basic Interpreter Variables — Hex $0000 to $008F — Decimal 0
to 143 — This section of page zero is used exclusively by the Basic
interpreter and of the variables stored in this section and 16 two byte
pointers stored between location 43 and 74 are the most interesting. If
machine code subroutines are being used in a Basic program then
locations 87 to 96 can be used for page zero variable storage, if a
machine code program is being run which does not require the Basic
interpreter then the whole 143 bytes in this block may be used for
variable storage. If the USR command is used or any of the Basic
function routines are called from a machine code program then the
Floating Accumulators 97 — 112 will be required for transfers of
variables.

2 — QOperating System Kernal Variables — Hex $90 to $FF —
Decimal 144 to 255 — All the variables and parameters stored in this
last section of page zero are of interest to the programmer. They
control the input and output functions of the VIC on the RS232 and
|EEE port, the allocation of files for 1/0 with peripheral devices, data
transfer between the VIC and the cassette deck, the control of the
screen editor, etc.

3 — Processor Stack — Hex $0100 to $01FF — Decimal 266 to 511—

The section of memory occupied by the stack is common to all 6502
processor systems. The processor uses the stack as a last in first out

47

buffer to store temporary data, such as return audresses in subroutine
calls. The operation of the stack is automecally controlled by the
processor and this area of memory should only be accessed with
extreme caution.

4 — Basic Buffer — Hex $0200 to $0258 — Decimal 512 to 600 —
These 89 bytes are used to temporarily store text or program lines (a
line is four screen lines maximum length or 88 characters) during
mput or output operations. When a program line is input it is
transferred from the Basic input buffer to memory by the terminating
carriage return. The line is then converted into the form in which it is
stored in memory, all the commands are converted into tokens thus
reducing the memory space occupied by the program. This area of
memory should be accessed with extreme caution.

5 — Operating System Kernal Variables — Hex $0259 to $02FF —
Decimal 601 to 767 — These operating system parameters and
variables do not require to be stored in page zero locations, they are a
continuation of the variables stored in page zero and deal with the
same functions. All locations in this section can be usefully accessed.

6 — Indirect Addressing and Vectored Jumps — Hex $0300 to
$0334 — Decimal 768 to 820 — This section of memory is used to store
indirect jump addresses for system functions and is thus of
considerable interest to the programmer. Some of the indirect
addresses are only temporarily stored here and are not of great use to
the programmer, 16 addresses are permanently stored here and they
relate to most of the major operating system functions. These
operating system vector addresses can be used to access the routines
or to intercept the routines and either insert some extra code or
replace the routine entirely. The programmer may want to intercept
or replace an operating system routine for a variety of reasons. By
inserting code into the interrupt routine which scans the keyboard
and updates the screen and clock 60 times a second the programmer
can, for example, get the VIC to automatically check the user port for
inputs. The programmer may wish 1o completely change the
operating system routines. If a non standard peripheral is connected
to the VIC then the input and output routines could be changed. The
use of vectored jump addresses increases the flexibility of the viC
system and allows the user to re-define the system to fit a particular
situation.

48

7 — Cassette Buffer — Hex $033C to $03FC — Decimal 828 to 1020
— This 193 byte buffer is used in data transfers between the VIC and
the cassette deck to store each block of data. If the cassette deck is not
being used then this section of memory can be used to store small
machine code programs.

49

HEX
$0000—$0002
$0003—3$0004
$0V05—$0006
$0V07

$0u008
$0009
$0U0A
$0u0B
$000C
$000D
$000E

$000F

$0010
$0011

$0012
$0013
$0014—$0015
$0016
$0017—$0018
$0019—$0021
$0022—$0023
$0024—%0025

DECIMAL FUNCTION

0—2
3—4
5—6
7

8

9

10
11
12
13
14

15

16
17

18
19
20—21
22
2324
25—33
34—35
36—37

$002B—$002C 43—44
$002D—$002E 45—46

$002F—$0030
$0031—$0032
$0033—%$0034

$0035—3$0036
$0037—$0038
$0039—$003A

47—48
49—50
51—52

53—54
56—56
57—58

$003B—$003C 59—60
$003D—3$003E 61—62

$003F—$0040
$0041—$0042

63—64
65—66

USR functior jump
Convert float— > integer
Convert integer — > float
General counter for Basic. Search
character ‘:" or endline
Scan between quotes flag, 00 as delimeter
Column position of cursor on line {0—87)
Verify flag
Basic input buffer pointer;# subscripts
DIM flag. First character of array name
Variable flag, type: FF=string, 00=numeric
Integer flag, type: 80 =integer, 00=floating
point
DATA scan flag; LIST quote flag;
memory flag
Subscript flag; FNx flag
Flags for input or read, 0=input,
64 = get, 1 = read
ATN sign flag: comparison evaluation flag
Current I/0O device for prompt suppress
Basic integer address (for SYS, GOTO etc)
Temporary string descriptor stack pointer
Last temporary string vector
Stack of descriptors for temporary strings
Pointer for number transfer
Misc. number pointer
Pointer to start of Basic
Pointer to end of program start of variables
Pointer to end of variables start of arrays
Pointer to end of arrays
Pointer to start of active string space
{coming down)
Pointer to top of active strings
Pointer to end of memory
Current Basic line number
Previous Basic line number
Pointer to Basic statement (for CONT)
Line number, cutrent DATA line
Pointer to current DATA item

50

$0u43—$0044
$0045—$0046
$0V47—$0048
$0U49—8004A

67—68
69—70
71—72
73—74

$004B—$004C 75—76

$0u4D

$004E—3$004F

77

78—79

$0050—3$0051 80—81

$0052
$0053
$0054—$0056
$0057—$005B
$005C—$0060
$0061—$0066
$0067
$0068
$0069—$006E
$0U6F
$0070
$0071—$0072
$0073—$008A

$008B—$008F
$0090
$0091
$0092
$0093
$0094

$0V95
$0096
$0097
$0098
$0099
$009A
$009B
$009C
$009D
$009E

51

82

83
84—86
87—91
92—96
97—102
103

104
105—110
111

112
113—114
115—138

139—143
144
145
146
147
148

149
150
151
152
153
154
155
156
157
158

Input vector

Current variable name

Current variable address

Variable pointer for FOR/NEXT

Y save register-new operator save;
current operator pointer

Special mask for current operator;

comparison symbol

Misc. work area; function definition
pointer hi-lo

Work area;pointer to string description

Length of above string

Constant used by garbage collect, 3or 7

Jump vector for functions

Misc. numerical storage area

Misc. numberical storage area

Accumulator#1: E,M, M, M, M, S

Series evaluation constant pointer

Accumulator high order propagation word

Accumulator #2

Sign comparison, primary vs. secondary

Low order rounding byte for Acc# 1

Cassette buffer length/series pointer

Subrtn: Get Basic char; 7A, 7B = pointer
(CHARGOT)

RND storage and work area

ST th 1/O operation status flag

Stop key flag: Keyswitch pia.

Temporary

Load or verify flag

Cassette/|IEEE load temp. |EEE buffered
char. flag

|EEE 488 buffered character

Cassette sync#

Temp for IEEE input

How many open files; pointer to file table

Input device#, normally 0

Output CMD device, normally default of 3

Tape character parity

Cassette dipole switch

OS message flag, direct = $50, run =0

Cassette errorpass 1. Temporary

$0U9F
$0VA0—S$00A2
$0VA3
$00A4
$00A5

$0UA6
$0VA7

$00A8
$0VA9
$0VAA

$0VAB

159
160—162
163
164
165

166
167

168

169

170

171

$00AC—$00AD 172—173
$00AE—S$00AF 174—175

$00B0O 176
$00B1 177
$00B2—$00B3 178—179
$00uB4 180
$00B5 181
$00B6 182
$00B7 183
$00B8 184
$00B9 185
$00BA 186
$00BB—$00BC 187—188
$008D 189
$00BE 190
$00BF 191
$00CO0 192
$00C1—$00C2 193—194
$00C3—$00C4 195—196
$00C5 197
$00C6 198
$00C7 199
$00C8 200

Cassette error pass 2. Temporary
Jiffy clock
Sernial bit count
Cycle counter for serial /O
Countdown for tape write; sync on tape
header
Cassette buffer pointer
RS-232 receiverinput bit storage.
Tape shortcount
RS-232 receiver bit count in. Tape read
error
RS-232 receiver flag start bit check.
Tape reading zeros
RS-232 receiver byte buffer.
Tape read mode
RS-232 receiver parity storage. Tape
short count
Tape start address; tape buffer, scrolling
Tape end address/end of current program
Temporary
Temporary
Address of tape buffer#1Y.
RS-232 transmitter bit count out
RS-232 transmitter next bit to be sent
RS-232 transmitter byte buffer
Length of current file name string
Current logical file number
Current secondary address, or
R/W command
Current device number
Address of current file name string
RS-232 write shift word/Receive
input character
blocks remaining to read/write
Temporary
Cassette manual/controlled switch
Tape start address (load)
Temporary
Matrix co-ordinates of key down
#of characters in keyboard buffer
Reverse mode flag, 0 = off, 18 = on
End of line for input pointer

52

$00F5—6

$00C9—$00CA 201—202

$00CB 203
$00CC 204
$00CD 205
$00CE 206
$00CF 207
$00D0 208

$00D1—$00D2 209—210

$00D3 211
$00D4 212
$00D5 213
$00D6 214
$00D7 215
$00D8 216
$00D9—8$00F1 217—241
$00F2 242
$00F3—3$00F4 243—244

$00F5—$00F6 245—246
$00F7—$00F8 247—248

$00F9—S$00FA 249—250

$00FB—S$00FF 251—255
$0100—$010A 256—266
$0100—$013E 256—318
$0100—8$01FF 256—511
$0200—$0258 512—600
$0259—$0262 601—610
$0263—$026C 611—620
$026D—$0276 621—630

$0277—8$0280 632—640
$0281—8$0282 641—642
$0283—$0284 643—644
$0285 645
$0286 646
$0287 647
$0288 648
$0289 649
$028A 650

53

$0O0F9—S$OO0FA

Cursor log (row, column)

Shift mode on print flag, which key, 64
if No. key

Cursor blink enabled flag, 0 = on, 1 = off

Delay before cursor biinks

Character before cursor

Cursor on/off blink flag

input from screen/input from keyboard

Screen address (row) pointer
(screen memory)

Position of cursor on current text line

Quote mode flag, 0 = off, 1 = on

Line length for screen (22, 44, 66, 88)

Current screen line number

Contain the ASCII value of last key press

Insert mode flag

Screen line table: hi order address and

line write

Temporary for line index

Screen editor colour |P

Keyscan table indirect

Pointer to RS—232 receive buffer base
location

Pointer to RS—232 transmitter buffer

base location

Free kernal zero page locations

Floating to ASCIl work area

Taps error log

Processor stack area

Basic input buffer

Logical file number table

Device numbertable

Secondary address or R/W cmd, table

IRQ keyboard buffer

Start of memory

Top of memory

IEEE timeout flag

Active colour nibble

Original colour before cursor

Base location of screen (MSB)

Keyboard queue length

Repeat flag, 0 = cursor control only
255 = all keys

$028B

$028C

$028D

$028E
$028F—$0290
$0291

$0292

$0293

$0294
$0295—$0296
$0297

$0298
$0299—$029A
$0298

$029C

$029D

$029E

$029F—$02A0
$02A1—$02FF

$0300—$0301
$0302—$0303
$0304—$0305
$0306—$0307

651
662
653
654
655—656
657
658
669
660
661—662
663
664
665—666
667
668
669

670

671—672
673—767

Delay before repeat occurs

Delay between repeats

Shift flag byte

Last shift pattern

Indirect for keyboard table setup

Shift mode switch, 0 = enabled, 1 = locked

Auto scroll down flag (0 = on,< 0 = off)

6551 control register

6551 command register

Non standard (bit time/2-100)

RS-232 status register

Number of bits to send (fast response)

Baud rate full bit time

RS-232 receiver input buffer index to end

RS-232 receiver input buffer point to start

RS-232 transmitter output buffer index
to start

RS-232 transmitter output buffer index
toend

Holds IRQ during tape operation

Free

BASIC INDIRECT JUMP ADDRESSES

768—769
770—771
772—773
774—775

$0308—$0309 776—777

$030A—$030B
$030C
$030D
$030E
$030F

778—779
780
781
782
783

Indirect error routine

Indirect main command handler
Indirect tokenisation routine
Indirect character list routine
Indirect character dispatch

Indirect symbol evaluation
Temporary storage during SYS of A
Temporary storage during SYS of .X
Temporary storage during SYS of .Y
Temporary storage during SYS of .F

54

KERNAL VECTOR ADDRESSES

$0514—3%$0315 788—789 |IRQ RAM vector
$0316—%$0317 790—791 BRK instruction RAM vector
$0313—30319 792—793 NMIRAM vector
$031A—8$031B 794—795 Open logical file
$031C—%$031D 796—797 Close logical file
$031F—$031F 798—799 Setinput device
$0320—$0321 800—801 Set output device
$0322—%$0323 802—803 Reset default I/0
$0324—%$0325 804—805 Input from device
$0326—3$0327 806—807 Output to device
$0328—%$0329 808—809 Test STOP key
$032A—$032B 810—811 Get from keyboard
$032C—%$032D 812—813 Close all files
$032E—$032F 814—815 Basic USR command vector
$0330—30331 816—817 Load from device

$0332 — $0333818—819 Save to device
$033C—3%03FC 828--1020 Cassette buffer

0400—OFFF 1024—4095 3K expansion RAM area
1000—1DFF 4096—7679 User Basicarea

1E00—1FFF 7680—8191 Screen memory

2000—3FFF 8192—16383 8K expansion RAM/ROM block 1
4000—5FFF 16384—24575 8K expansion RAM/ROM block 2
6000—7FFF 24576—32767 8K expansion RAM/ROM block 3

NOTE: When additional memory is added to block 1 {and 2 and 3), the
KERNAL relocates the following things for BASIC:

1000—11FF 4096—4607 Screen memory
1200—7? 4608—? User Basic area
9400—95FF 37888—38399 Colour RAM

8000—8FFF 32768—36863 4K Character generator ROM
8000—83FF 32768—33791 Upper case and graphics
8400—87FF 33792—33815 Reversed upper case and graphics
3C00—8FFF 35840—36863 Reversed upper and lower case

55

9000—93FF

9000—900F
9000

9001
9002

9003

9004
9005

9006
9007
9008
9009
900A

900B
900C

900D
900E

36864—37877 1/0 BLOCKO
36864—35879 Address of VIC chip registers

36864

36865
36866

36867

36868
36869

36870
36871
36872
36873
36874

36875
36876

36877
36878

bits 0—®6 horizontal centering

bit 7 sets interlace scan

vertical centering

bits 0—=6 set No. of columns

bit 7 is part of video matrix address
bits 1—6 set No. of rows

bit 0 sets 8x8or 16x8 chars

TV raster beam line

bits 0—3 start of character memory
(default=)

bits 4—7 is rest of video address
(default=F)

BITS3,2,1,0 CM starting address

————— HEX DEC
0000 ROM 8000 32768
0001 8400 33792
0010 8800 34816
0011 8C00 35840
1000 RAM 0000 0000
1001 XXXX

1010 XXXX unavail
1011 XXXX

1100 1000 4096
1101 1400 5120
1110 1800 6144
1111 1C00 7168

horizontal position of light pen
vertical position of light pen
Digitized value of paddle X
Digitized value of paddie Y
Frequency for oscillator 1 (low)

{on: 128—255)

Frequency for oscillator 2 {medium)
(on: 128—255)

Frequency for oscillator 3 (high)
(on: 128—255)

Frequency of noise source

bit 0—3 sets volume of all sound
bits 4—7 are auxilary colour information

56

900F

9110—91FF

57

9110

9111

9112
9113
9114
9115
9116
9117
9118
9119
911A

36879

37136—371561

37136

PIN
iD

ZPIWr RECTTMOO

6522 PIA No. 1
Port B output register

{user port and RS232 lines)
DESCRIPTION EIA ABV
Received data (BB) Sin
Request to Send (CA} RTS
Data terminal ready (CD) DTR
Ring indicator (CE) R
Received line signal (CF) DCD
Unassigned () XXX
Clear to send (CB) CTS
Data set ready (CC) DSR
Interrupt for Sin (BB) Sin
Transmitted data (BA) Sout
Protective ground (AA) GND
Signal ground (AB) GND
Port A output register

37137

37138
37139
37140
37141
37142
37143
37144
37145
37146

6522
ID

Screen and border colour register
bits 4—7 select background colour
bits 0—2 select border colour
bit 3 selects inverted or normal
mode

(PAO) Bit 0=Serial CLK IN
(PA1) Bit 1=Serial DATAIN
(PA2) Bit2=Joy 0
(PA3) Bit 3=Joy 1
(PA4) Bit 4=Joy 2
(PA5) Bit 5=Light pen/Fire button
(PA6) Bit 6=Cassette switch sense
(PA7) Bit 7=Serial ATN out
Data direction register B
Data direction register A
Timer 1 low byte
Timer 1 high byte 6 counter
Timer 1 low byte
Timer 1 high byte
Timer 2 low byte
Timer 2 high byte
Shift register

9118
911C

911D
911E
911F
9120—912F
9120

9121

9122
9123
9124
9125
9126
9127

9128
9129
912A
912B
912C

912D
912D
912F
9400—95FF

37147
37148

37149
37150
37151
3715237167
37152

37153

37154
37165
37156
37157
37158
37159

37160
37161
37162
37163
37164

37165
37166
37167
37888—38399

Auxiliary control register
Peripheral control register
(CA1.CA2.CB1.CB2)
CA1 = restore key (Bit 0)
CA2 = cassette motor control
(Bits 1-3)

CB1 = interrupt signal for received

RS232 data (Bit 4)
CB2 = transmitted RS232 data
(Bits 5-7)
Interrupt flag register
Interrupt enable register
Port A (Sense cassette switch)
6522 PIA No. 2
Port B output register
keyboard column scan
(PB3) Bit 3 = cassette write line
(PB7)Bit7 = Joy 3
Port A output register
keyboard row scan
Data direction register B
Data direction register A
Timer 1. low byte latch
Timer 1. high byte latch
Timer 1. low byte counter
Timer 1. high byte counter
timer 1 is used for the 60 time/
second interrupt
Timer 2. low byte latch
Timer 2. high byte latch
Shift register
Auxiliary control register
Peripheral control register
CA1 Cassette read line (Bit 0)
CAZ2 Serial clock out (Bits 1-3)
CB1 Serial SRQ IN (Bit 4)
CB2 Serial data out (Bits 5-7)
Interrupt flag register
Interrupt enable register
Port A output register
Location of COLOUR RAM with
additional RAM at blk 1

58

9600—97FF
9800—9BFF
9CO0—9FFF
AOO0—BFFF
CO00—DFFF
EOQ0—FFFF

59

38400—38911 Normal location of COLOUR RAM
38912—39935 170 block 2

39936—40959 1/0 block 3

40960—49152 8K decoded block for expansion ROM
49152—57343 8KBasic ROM

57344—65535 8K Kernal ROM

VIC USER MEMORY

The amount of memory available to the user depends on whether
any RAM expansion cards are attached to the VIC, it will vary between
3K on a standard VIC to 31K on a fully expanded system. This memory
space is however not completely available for program storage being
also required for the storage of string and numeric variables and the
screen memory. It is no use writing a program 3K long and trying to
run it on a standard VIC as this will just result in the operating system
giving an out of memory error. The Basic program is stored from
location 4097 upwards (if the 3K RAM expansion card is fitted then
programs start at location 1025) and the string and variables are
stored from top of memory downwards.

Program Storage

When a program line is entered on the keyboard it is first written
into the keyboard buffer. The operating system then transfers it byte
by byte as it is entered onto the screen. The line however is not
entered into memory until a carriage return is pressed. This causes
the operating system to transfer the program line just entered from
the screen into memory via the Basic buffer where the line of code is
compressed and formatted. Each line is stored in a specific format
using a compressed version of the Basic text. This reduces the
memory requirements of a program and allows longer programs to be
run. The compression of Basic text involves conversion of the Basic
commands into single byte tokens. The command PRINT instead of
being stored as five ASCIl characters is stored in a single byte as the
decimal value 153. When a program is listed the text compression
process is reversed, as far as the user is concerned the program is
stored in the same form as it was written.

A useful result of text compression is a shorthand way of writing
Basic commands either in a program or direct command mode. This
relies on the fact that the routine which converts commands to tokens
looks only at the first two or three characters of a command word.
Other characters in the command word are there for the users
convenience only. Normally if we entered only the first couple of
characters of a command the computer would respond with an error
message. This can be done by using a simple method of fooling the
error detection routines. Enter any Basic reserved word, type the first
letter of the word, then depress the shift key and type the second
letter. By using just the first two letters there could be confusion

60

VIC-20 BASIC Keyword Codes

Code Character/ Code Character/ Code Character/ Code Character/
{decimal} Keyword (decimal)l Keyword (decimal Keyword {decimal) Keyword

0 End of line 66 B 133 INPUT 169 STEP
1-31 Unused 67 c 134 DIM 170 +
32 space 68 D 135 READ 7 —
33 ! 69 E 136 LET 172 .
34 .. 70 F 137 GOTO 173 /
35 # ! G 138 RUN 174 1
36 $ 72 H 139 IF 175 AND
37 % 73 I 140 RESTORE 176 OR
38 & 74 J 141 GosuB 177 >
39 ' 75 K 142 RETURN 178 =
40 { 76 L 143 REM 179 <
41) 77 M 144 sTOP 180 SGN
42 : 78 N 145 ON 181 INT
43 79] 146 WAIT 182 ABS
44 80 P 147 LOAD 183 USR
45 —_ 8t Q 148 SAVE 184 FRE
46 . 82 R 149 VERIFY 185 POS
47 / 83 S 150 DEF 186 SQR
48 0] 84 T 151 POKE 187 RND
49 1: 85 U 152 PRINT # 188 LOG
50 2. 86 \ 153 PRINT 1fl(EXP
51 3 87 W 154 CONT 190 cos
52 4 88 X 165 LIsT 191 SIN
53 5. 89 Y 156 CLR 192 TAN
54 6 90 p4 167 CMD 193 ATN
55 7 N [1568 - SYS 194 PEEK
56 8 92 X 159 OPEN 195 LEN
57 9 93 i 160 CLOSE 196 STR$
58 : 94 1 161 GET 197 VAL
59 B 95 - 162 NEW 198 ASC
60 < 96-127 Unused 163 TAB(199 CHRS
61 = 128 END 164 TO 200 LEFT$
62 > 129 FOR 165 FN . 201 RIGHTS$
63 ? 130 NEXT 166 SPC(202 MID$
64 131 DATA 167 THEN 203-2564 Unused
65 A 132 INPUT 168 NOT 255 n

Note that the left parenthesis is stored as part of the one-byte token
for functions TAB and SPC, however, the other functions use a
separate byte for this symbol. For example, the line:

10 IF INT(A) <5 THEN PRINT TAB(X)

would be coded as the following bytes (in decimal):

Link}10]0]139]32]181|40]65]41]179|53]32|167|32{163|32|163|88]41}0

Linel 1(A)<5 l l lX)
Number IF INT THEN PRINT TAB(

61

between commands which share the first two letters, as in the STOP
and STEP. In these cases the first two letters should be typed followed
by the third with the shift key depressed. Table 2 is a list of Basic
commands and their abbreviated form with the numerical value of the
command token in both decimal and hexadecimal.

The token value given to a Basic command is a pointer into a table of
reserved command words located between 49310 and 49566. By
subtracting 127 ‘from the token value the number of the word in that
table can be obtained. It should be noted that the technique of using
tokens to represent words can give the programmer a very powerful
method of generating print statements without consuming a large
amount of memory. This can prove especially useful in games
programs, such as Adventure, which require a lot of text generation. A
table of, say, 200 common words is constructed and each time one of
these words appears in a print statement it is represented by a
number pointing to its location in the table. Obviously some sort of
output subroutine is required to convert the token back into a word
but the saving in memory space can be considerable, especially if
done using machine code routines.

Having converted the Basic command into a single byte token the
line is stored together with the line number and a link address at a
location just above that of the last line entered. Assuming it is the first
line of a program being entered on a standard VIC, then it will be
entered into the following locations using the following format.

4096 — contents 0

4097 — link address low

points to starting
location of next line

4098 — link address high

4099 — line number low

4100 — line number high

4101 — start of compressed Basic text.

Number of bytes occupied variable.
End of line flagged by a zero byte.

A Basic program is stored as a series of blocks each of variable
length and representing one line in the program. Each block having a
fixed format and all blocks being connected via a linked list structure.
Each line in a program is stored in memory in the correct position
dictated by the magnitude of its line number, thus it will be the line

62

Start 1025

1024
Llnk |_| ne
0 address No. Text 0

Link Line

address No. Text
Link Line

address No. Text

0 0 +» END

Fig. 9 — How a Basic program is stored in memory.

63

with the lowest number which is stored at the bottom of memory —
location 4097 up. The line number is stored in byte 3 and 4 of a block in
binary format. This means that the largest line number that can be
used in a program is 65535, any number above that will give a syntax
error. When a program is run the current line number being executed
is stored in locations 57 and 58. A direct mode of operation for the
processor is indicated when the contents of these two bytes is zero.
The double byte link address points to the starting byte of the next
line. As each line is executed this address is stored in locations 122
and 123, where it is accessed when the operating system fetches the
next line. The link address of the last line of a program points not to
another link address as in a normal program line, but to two bytes the
contents of which are zero. The storage of a program within memory
is best illustrated by the diagram in Figure 9.

A knowledge of how a program is stored in memory is useful,
enabling several operations not otherwise allowed by the system to
be performed; line renumbering, program margins and overlays. Line
numbers can be changed simply by changing the contents of ‘bytes
three and four of each block (line). The beginning of each line is
located using the link address obtained from the previous line. It
should be noted however that this will not renumber any of the jump
addresses stored in the Basic text. To do this the program must
examine the tokens used in the Basic text area, looking for GOTO or
GOSUB commands and renumber their jump addresses. Whereas the
line number is stored in a binary format the jump line number is stored
in ASCIl and is thus of variable length.

DATA STORAGE

The entire area of memory not used for program storage is available
for storage of data. Firstly, it is worth looking at the simplest form of
data storage — using data statements. A data statement is stored as
part of a program in the Basic text area of memory. The data is
accessed by the program using the READ command. Data stored in
data statements can only be added to by adding program lines.
Another limitation is that data can only be accessed from data
statements in a serial mode, meaning that to find one particular item
the whole table of data must be read. The pointer to the current data
statement is stored in locations 65 and 66 and the data line in 63 and
64. Manipulation of the contents of these locations could provide the
user with a means of overcoming the serial search limitation.

Data not stored within the program as data statements, is stored by
the program in the area of memory above the Basic text area, as
variables. Variables can be divided into two groups. Simple variables
of the kind used in the following statement; LET X = 47 where X is a
simple variable. Array variables are defined by a DIM statement and
contain more than one value. The number of values is determined by
the number of elements in the DIM statement. For both groups of
variables there are three types of data — real or floating point
numbers — integer numbers — and character or string variables,
(where words are being stored rather than numbers).

Simple variables of whatever data type are stored immediately
above the Basic program text area, at an address pointed to by the
contents of locations 46 and 46. The amount of memory used to store
these variables depends on the number of variables used by a
program. Each variable occupies seven bytes of memory and the next
free location in the simple variable storage area is pointed to by the
contents of locations 47 and 48.

The array variables are stored above the simple variables and thus
start from the location pointed to by 47 and 48. The amount of
memory used to store the array variables depends on the number of
array variables, the number of elements in each and the data type of
each variable. The end of the storage area used for array variables
which is also the beginning of the unused storage area of memory, is
pointed to by locations 49 and 50. Since array variables are stored
directly above simple variables, whenever a new simple variable is
encountered in a program, the operating system shifts the entire

65

INTEGER VARIABLES

y .
first second high ' low
character in variable orderbyteofbinary | o | 0
name (the ASCII representation of
value + 128) integer value

FLOATING POINT VARIABLE

!

binary mantissa in packed

character only.

string is stored

first second binary

character in variable | exponent BCD giving eight digit
name +129 precision. First bit of first
byte is sign bit.
STRING VARIABLES

first second s

character in variable number low high
order byte of
name, 128 added to of address where | O 0
ASCl! value of second | characters

Fig. 10 — The storage of Basic variables in memory.

66

array variable storage area up seven bytes in memory thereby
opening up a space to accommodate the new variable. This dynamic
re-allocation of data storage space is one of the reasons why a
machine code subroutine can not be stored in unused memory space,
unless placed above the address stored in the top of memory pointers
in locations 55 and 56. The re-allocation of memory space slows down
a program, every time a new variable is encountered processing stops
while the data is moved. When processing speed is important, such as
in real time applications, this rather inconsistent variation in speed
can be a problem. It is overcome by initialising all the variables —
using dummy constants if necessary - at the beginning of the
program.

Single value variables are divided into three distinct data types,
each being stored in a different format. The only thing all three have in
common is that each variable stored requires seven bytes of memory.
Both integer and floating point numbers stored as single value
variables have both the name and the value stored within the seven
bytes allocated to each variable. An integer variable is distinguished
from a floating point variable by adding 128 to the ASCIl value of the
variable name. The formats used are shown in Figure10. From this, one
can see that there is no saving in memory usage by using single value
integer variable instead of floating point variables.

When the data being stored consists of a string of alphanumeric
characters then the variable is stored using the character format. In
this format the data is not stored within the seven bytes allocated for
variable storage. What is stored is a pointer to an address in memory
where this string of characters is stored. Character strings are in fact
stored in an area right at the top of memory and extending
downwards towards the area occupied by the array variables. By
using this method string variables need not be of a fixed length
thereby considerably reducing the amount of memory needed to
store them. The format used for a string variable is shown in Figure 10.

Since the number of characters in the string is stored as a single
byte it is not possible to have a character string longer that 255
characters. This should be considered when adding two string
variables together where both are fairly long. Though the area at the
top of memory is allocated for the storage of strings, not all string
variables are stored there. Thus all strings defined within the program
are retrieved, when required from the program text area. This is done

67

Array Element Element | Element Element
header No.0 No.1 No. 2 No.N
first second | low high | number high = low
characters in pointer to first of ““mbef of .
array name, byte of next | dimens- elements in the | expansion
plus data type array ions in last specified bytes
. coding if any array dimension of
| .) the array

FLOATING POINT ARRAY ELEMENT

ef";?gn t binary mantissa, first byte bit 7
p is used to indicate the sign.
plus 129
INTEGER ARRAY ELEMENT
high low
order byte of binary

integer value

CHARACTER ARRAY ELEMENT

number
of
characters
in string

byte of address
where string is

low high

stored

Fig. 11 — The storage of Basic array variables in memory.

68

by having the variable address pointers point to the location in Basic
text rather than the top of memory. What is stored at the top of
memory are calculated string variables. The area of memory occupied
by these strings can be determined by looking at the contents of
locations 51 and 52 this is the start address of the string area, and 53
and b4 which is the end address.

The three data types encountered as simple single value variables
can also be stored as multiple value or array variables. Whereas
simple variables of whatever data type all occupy the same amount of
memory for each variable, the memory requirement for an array is
different for each type of data. An array is stored as; an array header
plus a set of elements each roughly corresponding to a simple
variable. The array header contains the array name, the number of
dimensions in the array, the number of elements in each dimension
together with a pointer to the start of the next array. Array headers
are the same for all data types. As with simple variables the array data
type is coded into the array name. In a floating point array both
characters are the normal ASCII code. In an integer array 128 is added
to the ASCII value of both characters, and in a character array 128 is
added to the ASCIl value of the second character only. The general
format of an array is shown in Figure 11.Here N is used to designate the
last element in an array and corresponds to the value used in the DIM
statement at the beginning of the program when the array was
initialised. The array header for whatever data type has the format
shown in Figure11.

In a one dimensional array the array header occupies seven bytes,
but if two dimensions are specified then an extra two bytes are
required to specify the number of elements in that dimension, making
the header nine bytes long. Similarly if there are three dimensions it
would be eleven bytes long. In a two dimensional array set up by DIM
D(A, B) the number of elements in B is stored in bytes 6 and 7 of the
header, the number of elements in A is stored in bytes 8 and 9. The
format for each element in an array is identical since all elements are
of the same data type, though the format is different for each data
type, these are shown in Figure 11.

NOTE: a negative integer whether in an array or a simple variable is
stored as a two's complement number, thus a negative integer
cannot exceed 32768.

69

Programs involving extensive string manipulation can suffer from
seemingly inexplicable and often lengthy pauses in their operation.
This is caused by an operating system function known as garbage
collection. Every time a character string is input, or calculated, it is
stored at the bottom of the character string storage area in a string.
To avoid running out of memory the system must perform at this
point a “‘garbage collection” routine. Garbage collection reclaims all
the unused memory and compacts the string storage at the top of
memory. This subroutine which is located at $D526 is lengthy and
time consuming especially in large programs and is the main reason
why such programs run at a much slower rate than small programs.
One can force garbage collection to take place by performing the
command FRE (U) which calculates the amount of free memory space.
This is useful if you don't want a real time program interrupted by the
garbage collection process. Generally the more user memory there is
available in the system, coupled with extensive string manipulation in
a program, the longer the delays caused by garbage collection.

70

THE BASIC AND OPERATING SYSTEM SOFTWARE

The top 16K of memory is occupied by the system software, these
are the programs which allow the VIC to be programmed in Basic, to
display and input data, and communicate with peripheral devices.
This 16K of machine code programs is very important since it defines
the VIC as a system, the VIC hardware is very flexible and by changing
the system software the VIC could become a totally different machine.
There is nothing to stop the user from completely re-defining the VIC
interfaces to conform to say Centronics standard rather than RS232, it
just requires a change in the operating system software. Similarly the
VIC could be converted to run any high level language instead of Basic
simply be replacing the Basic interpreter software. This flexability is
an extremely valuable feature of the VIC since it allows the
programmer to re-define the system to suit a particular application.

The 16K of system software can be divided into two distinct
sections, the Basic interpreter and the operating system kernal. Each
of these two sections are approximately the same length and each is
contained on its own 8K ROM. The Basic interpreter ROM lies in
memory space from address hex $0000 to $DFFF, the operating
system kernal BOM lies from address hex $E000 to $FFFF. The
operating system kernal is a totally self contained program and does
not need the Basic interpreter program to function. The Basic
interpreter however, uses the operating system routines to perform
all 1/0 and peripheral communications functions. Both Basic and the
operating system transfer variables between their constituent
routines and between the two programs using the RAM space
allocated to variables at the bottom of memory and processor registers
are also used.

In Basic most of the calculations are performed using floating point
numbers rather than simple integers or binary values. Consequently
most of the routines which perform these functions utilise one or both
of the floating point accumulators, both are located in page zero
memory, they have the following format and location:

Location
AccNo.1 AccNo.2 Function
$61 $69 Exponent + $80
$62 $6A Fraction MSB (binary)
$63 $6B Fraction byte 2
$64 $6C Fraction byte 3

71

$65 $6D Fraction LSB

$66 $6E Sign (FF =—and 0 =+)
$6F Sign comparison byte
$70 Rounding byte for Acc No. 1

The majority of routines within both Basic and the operating
system can be accessed and used by other machine code programs
requiring that function, this can greatly reduce the amount of code
required. To use these routines one needs to know the entry point and
the nature, location and format of any parameters passed between
the routine and the calling program. The designers of the VIC have
made it fairly easy to use 36 of the most useful routines in the
operating system kernal, by making them accessible through a jump
table. Other routines in the kemal and Basic are less easy to use,
particularly in Basic since this software originated outside
Commodore (it was originally written by Microsoft but ammended by
Commodore). All the major system software entry points are listed in
Table 3 together with a short description of the function of each
routine. The following is a description of the most useful of these
routines, how their parameters are passed and how they can be used
from a user written machine code program.
$C43A — Error Message Handling Routine

Communication registers: message No. is in Xreg.

Description: This routine outputs an error message from the table
of error messages, the message number is contained in the X index
register. The error message is output to the currently open output
device (default to screen). This is a useful way of generating error
messages in a user program though one is limited to the standard set
of messages.

$C483 — Main Command Handling Routine.

Description: This routine handles a new Basic line input from the
keyboard and either executes it in the direct mode or stores it in
indirect mode. This routiné will be required by the programmer when
adding extra commands to Basic.

$C560 — Input and Place in Basic Buffer.

Communication registers: 89 byte Basic buffer locations $0200 to
$0258

72

NAME
C000—C045
C046—C073
C074—C091
C092—C192
C193—C2A9
C38A—C3B7
C3B8—C3FA
C3FB—C407
C408—C434
C435
C474—C482
C483—Cbh32
C533—Cb5F
C560—C57B
C57C—C612
C613—C641
Ce42
C660—C68D
C68E—C69B
C69C—C741
C742—C7EC
C7ED—C81G
C81D—C82B
C82C—C856
C857—C870
C871—C882
C883—C89F
C8A0—C8D1
C8D2—CB8EA
C8EB—C905
C906—C908
C909—C927
C928—C93A
C93B—C94A
C94B—C96A
C96B—CoA4
CO9A5—CA1C

73

FUNCTION
Action addresses for primary keywords
Action addresses for functions

Hierarchy and action addresses for operators

Table of Basic keywords

Basic messages, mostly error messages
Search stack for FOR or GOSUB activity
Open up space in memory

Test: stack too deep?

Check available memory

Send canned error message, then:

Print Ready

Handle new Basic line from keyboard
Rebuild chaining of Basic lines in memory
Receive line from keyboard

Change keywords to Basic tokens
Search Basic for a given Basic line number
Perform NEW, then:

Perform CLR

Reset Basic execution to start-of-program
Perform LIST

Perform FOR

Execute Basic statement

Perform Restore

Perform STOP and END

Perform CONT

Perform RUN

Perform GOSUB

Perform GOTO

Perform RETURN, and perhaps:

Perform DATA, i.e., skip rest of statement
Scan for next Basic statement

Scan for nextBasic line

Perform IF, and perhaps:

Perform REM, i.e., skip rest of line
Perform ON

Get fixed-point number from Basic
Perform LET

D11D—D193

CATD—CA2B
CA2C—CA7F
CA80—CA8b5
CA86—CA99
CA9A—CB1D
CB1E—CB3A
CB3B—CB4C
CB4D—CB7A
CB7B—CBA4
CBA5—CBBE
CBBF—CBF8
CBF9—CCO05
CCo6—CCFB

CCFC—CD1D
CD1E—CD77
CD78—CD8D
CD9E—CEFO
CEF1—CEF6
CEF7—CEF9
CEFA—CEFC
CEFD—CF07
CFo8—CF0C
CFOD—CF13
CF14—CFA6
CFA7—CFEb
CFE6—CFES
CFE9—DO015
D016—D07D
D07E—DO8A
D08B—D112
D113—D11C
D110—D193
D194—D1A4
D1A5—D1A9
D1AA—D1D0
D1D1—D34B
D34C—D37C
D37D—D390
D391—D33D
D39E—D3A5
D3A6—D3B2

Add ASCII digit to accumulator No. 1.
Continue to perform LET

Perform PRINT #

Perform CMD

Perform Print

Print string from memory

Print single format character (space, cursor-right,?)

Handle bad input data

Perform GET

Perform INPUT No.

Perform INPUT

Prompt and receive input

Perform READ; common routines used by
INPUT and GET

Messages: EXTRA IGNORED, REDO FROM START

Perform NEXT

Check data type, print TYPE MISMATCH

Input & evaluate any expression (numeric or string)

Evaluate expression within parentheses ()

Check right parenthesis)

Check left parenthesis (

Check for comma

Print SYNTAX ERROR and exit

Set up function for future evaluation

Search for variable name

Identify and set up function references

Perform OR

Perform AND

Perform comparisons, string or numeric

Perform DIM

Search for variable location in memory

Check if ASCII character is alphabetic

Create new Basic variable

Array pointer subroutine

32768 in floating binary

Evaluate expression for positive integer

Find or create array

Compute array subscript size

Perform FRE then:

Convert fixed point to floating point

Perform POS

Check if direct command, print ILLEGAL DIRECT

74

D3B3—D3EO0
D3E1—D3F3
D3F4—D464
D465—D474

Perform DEF
Check FNx syntax
Evaluate FNx

Perform STR$

D475—D486
D487—D4F3
D4F4—D525
D5626—D5BC
D5BD—D605
D606—D63C
D63D—D679
D67A—DB6A2
D6A3—D6DA
D6DB—D6EB

Calculate string vector

Scan and set up string

Subroutine to build string vector
Garbage collection subroutine

Check for most eligible string collection
Collect a string '
Perform string concatenation

Build string into memory

Discard unwanted string

Clean the descriptor stack

D6EC—D6FF
D700—D72B
D72C—-D72C
D737—D760
D761—D778B
D77C—D781
D782—D78A
D78B—D79A
D79B—D7AC
D7AD—D7EA
D7EB—D7F6
D7F7—D80C
D80D—D823
D824—D82C
D82D—D848

Perform CHR$
Perform LEFT$
Perform RIGHT$
Perform MID$

Pull string function parameters from stack

Perform LEN

Move from string-mode to numeric-mode

Perform ASC

Input byte parameter

Perform VAL

Get two parameters for POKE or WAIT
Convert floating point to fixed point

Perform PEEK
Perform POKE
Perform WAIT

D849—D84F
D850—D861
D862—D946
D947—D97D
D97E—D982
D983—D9BB
DOBC—D9E9
D9EA—DA2F
DA30—DAS8
DA59—DA8B
DA8BC—DAB6
DAB7—DAD3
DAD4—DAE1

Add 0.5 to accumulator No. 1.

Perform subtraction

Perform addition

Complement accumulator No. 1

Print OVERFLOW and exit

Multiply-a-byte subroutine

Function constants: 1, SOR(.5), SOR(2), —00.5. etc.
Perform LOG

Perform multiplication

Multiply-a-bit subroutine

Load accumulator No. 2 from memory

Test and adjust accumulators No. 1 and No. 2.
Handle overflow and underflow

75

DAE2—DAF8
DAF9—DAFD
DAFE—DBO6
DB07—DB11

DB12—DBA1

DBA2—DBC6
DBC7—DBFB
DBFC—DCO0B
DCOC—DC1A
DC1B—DC2A
DC2B—DC38
DC39—DCb7

DC58—DCBA
DC5B—DC9A
DC9B—DCCB
DCCC—DCF2
DCF3—DD7D
DD7E—DDB2
DDB3—DDC1

DDC2
DDCD—DDDC
DDDD—DF10
DF11—DF70
DF71—DF77
DF78—DFB3
DFB4—DFBE
DFBF—DFEC
DFED—EO3F
E040—E089
EOBA—E093
E094—EOF5
EOF6—E260
E261—E267
E268—E2BO
E281—E2DC
E20D—E30A
E30B—E33A
E33B—E377
E378—E386
E387—E3A3
E3A4—E428

Multiply by 10

10 in floating binary

Divide by 10

Perform divide-into

Perform divide-by

Load accumulator No. 1 from memory

Store accumulator No. 1 into memory

Copy accumulator No. 2 into accumulator No. 1.

Copy accumulator No. 1 into accumulator No. 2.

Round off accumulator No. 1.

Compute SGN value of accumulator No. 1.

Perform SGN

Perform ABS

Compare accumulator No. 1 to memory

Convert floating-point to-fixed-point

Perform INT

Convert string to floating-point

Get new ASCI digit

String conversion constants: 99999999,999999999
1E+9

Print IN, followed by:

Print Basic line number

Convert number or TI$ to ASCII

Constants for numeric conversion

Perform SQR

Perform power function

Perform negation

Constants for string evaluation

Perform EXP

Function series evaluation subroutines

Manipulation constants for RND

Perform RND

Kernal patch routines (see Appendix 6 for listings)

Perform COS

Perform SIN

Perform TAN

Constants for trig evaluation pi/2, 2No.pi, .25, etc.

Perform ATN

Constants for ATN series evaluation

Initialise RAM vectors

Subroutine to be moved to zero page ($70 to $87)

Initialise Basic system

76

E429—E44E

E44F—E478B
E47C—E4FF

E500—E504
E605—E509
E60A—EB17
E518—EbB80
E681—EHB6
£587—EbBB4
E6B5—EBC2
E6C3-—EBCE
ESCF—EB4E
E64F—E741
E742—E8E7
E8E8—ES8F9
ESFA—EST11
E912—E928
E929—E974
E975—EAAQ
EAAT—EB1D

EBIE—EC45
EC46—EE13
EE14—EEBF
EECO—EEC4
EEC5—EECD
EECE—EEE3
EEE4—EEFD
EEF6—EFO3
EFO4—EF18
EF19—EFA2
EFA3—EFED
EFEE—FO035
FO36—F173
F174—F1E1
F1E2—F1F4
F1F5—F20D
F20E—F279

77

Messages: BYTES FREE, **** CBM BASIC
V2 * % ¥ ¥

Vector initialisation (see Appendix 6 for listings)

Unused space

KERNAL ROUTINES

Return address of 6522

Return max rows and columns of screen
Read/plot cursor position

Initialise 1/0

Home function

Move cursor to current line index pointer
Panic NMI entry (Restore key)

Initialise 6561 VIC chip

Remove character from queue

Input a line until carriage return

Print routine

Check for decrement in line index pointer
Check for increment in line index pointer
Check colour

Table to convert from screen code to ASCII
Screen scroll routines

IRQ routines, put char on screen and update time,
generate 1/0

General keyboard scan

Keyboard matrix tables

Command serial bus device to listen

Send secondary address after listen
Release attention after listen

Talk second address

Buffered output to serial bus

Send untalk command on serial bus
Send unlisten command on serial bus
Input a byte from serial bus

NMI continue routine

Transmit byte

NMI routine to collect data into bytes (RS-232)
Kernal messages

Print message to screen

Get character from channel

Input character from channel

F27A—F2C6
F2C7—F308
F309—F349
F34A—F3EE
FSEF—F3F2
F3F3—F409
FAOA—F541
F542—F674
F675—F733
F734—F76F
F770—F77D
F77E—F7AE
F7AF—F889
F88A—FI8D
FO8E—FABC
FABD—FBE9
FBEA—FD21
FD22—FE90
FEY1—FEA8
FEA9—FF5B
FFoC—FF71
FF/2—FF85
FF85—FFFF

Output character to channel
Open channel for input

Open channel for output
Close logical file

Close all logical files

Clear channels

Open function

Load RAM function (from cassette or bus devices)
Save function

Time function

Test stop key

Error handler

Find and read tape header
Cassette control routines
Tape read routines

Byte handler for cassette read
Tape write routines

System power up initialisation
Memory check routines

NMI handler

Baud rate tables

IRQ handler

Kernal jump vector addresses

78

Description: Data strings up to 88 characters long are input by t_his
routine and stored in the Basic input buffer. The buffer is filled starting
at location $0200 upwards, end of string terminated by a zero byte.

$C57C — Tokenise Basic Command.

Description: Basic commands are converted to single byte tokens
by this routine, reducing memory requirements for program storage.
Routine required when adding commands to Basic.
$CBIE — Print String Pointed toby Y, A
Communication registers: Y index and Accumulator.

Description: A data string is printed on the current output device,
default device is the screen. The memory address of the start of the
string is pointed to by the contents of the Y index register (LSB of
address) and the Accumulator (MSB of address). The end of the string
is the first byte encountered containing a binary zero.

$CE86 — Evaluate Expression.

Communication registers: Page Zero $7A and $7B plus Stack and Accs
No. 1 and No. 2

Description: This routine evaluates a Basic expression starting at
an address stored in locations $7A (LSB of address and $7B (MSB of
address). The result is stored in Accumulator No. 1.

$CFE6 — Logical OR between contents of Acc No. 1 and Acc No. 2.

Communication registers: Floating point Accumulators No. 1 and No.
2.

Description: A logical OR is performed between values contained in
the two floating point accumulators, the result is placed in
accumulator No. 1.

$CFEB — Logical AND between contents of Acc No. 1 and Acc No. 2.

Communication registers: Floating point Accumulators No. 1 and No.
2.

79

' Description: -A logical AND is performed between values contained
in the two floating point accumulators, the result is placed in
accumulator No. 1.

$D1AA — Convert Floating Point Number to Integer.

Communication registers: Floating point Accumulator No. 1.

Description: A number in floating point format stored in
Accumulator No. 1 is converted by this routine to a double byte
integer stored in two bytes of Accumulator No. 1. The two bytes used
are $64 and $65, the format of the integer number is 100* $64 + $65.

$D37D — Perform FRE function.
Communication registers: Floating Accumulator No. 1.

Description: This function determines the number of free bytes of
memory available in the system for user program or data storage. The
arguments of the function are stored and returned as a floating point
number in Accumulator No. 1.

$D391 — Integer to Floating Point conversion.

Communication registers: Y index register, Accumulator, and
Floating Accumulator No. 1.

Description: A two byte integer value stored in Y index register and
Accumulator is converted to a floating point number stored in floating
accumulator No. 1. The integer value is stored in the format — 100 *
accumulator + Y index register.

$D77C — Perform LEN function.

Communication registers: X index register, and Floating accumulator
No. 1.

Description: This routine calculates the number of characters in a
string, the argument of the function, ie. the string name, is stored in
bytes $64 and $65 of floating accumulator No. 1. The string length is
returned in the X index register.

80

81

— LOOP RETURN ADDRESS

— RETURN LINE No

“TO" VALUE

SIGN OF STEP FOR - NEXT

STEP VALUE

— VARIABLE'S ADDRESS

$81

—— $FBFC

— RETURN ADDRESS GO-SuB

— RETURN LINE No

$ 8D

Fig. 12 — Stack usage by two Basic interpreter routines.

$D850 — Subtract Acc No. 2. from Acc No. 1.

Communication registers: Floating Accumulators No. 1 and No. 2.
and Accumulator.

Description: The contents of floating point accumulator No. 2. is
subtracted from the contents of floating accumulator No. 1. by this
routine, the result being stored in accumulator No. 1. Before this
routine is called the sign comparison byte $6F must be set, this is done
by exclusively ORing the contents of $66 and $6E and storing the
result in $6F, the processor accumulator should also contain the value
stored in location $61 (MSB of Acc No. 1.).

$DIEA — Perform LOG function.
Communicating registers: Floating point accumulator No. 1.

Description: This routine performs the LOG function, the value used
in the functions argument is stored in floating accumulator No. 1. the
result is placed in the same accumulator.

$DA30 — Multiply Floating Point Number in Memory by Acc No. 1.

Communicating registers: Floating point accumulators No. 1 and No.
2., accumulator and Y index register.

Description: This routine first obtains the contents of floating
accumulator No. 2 from memory. The memory location is a two byte
address stored in the processor accumulator and Y index register, the
format used is 100 * Y index + accumulator. The value stored in
accumulator No. 2. is then multiplied by the contents of accumulator
No. 1 and the result stored in accumulator No. 1.

$DA33 — Multiply Acc No. 2. by Acc No. 1.

Communicating registers: Floating point accumulators No. 1. and No.
2. and processor accumulator.

Description: The contents of floating point accumulator No. 2. is
multiplied by the contents of accumulator No. 1., and the result stored
in accumulator No. 1. Before using this routine the sign comparison in
$6F should be set, this is done by exclusively ORing the contents of
the two sign bytes $66 and $6E and storing the result in $6F. The

82

exponent of the value in accumulator No. 1., stored in $61, should be
loaded into the processor accumulator prior to running this routine.

$DASC — Move Contents of Memory to Acc No. 2.

Communicating registers: Floating point accumulator No. 2.,
processor accumulator and Y index register.

Description: This routine takes a value stored in memory and loads
it into floating point accumulator No. 2. The two byte memory
address for the value is stored in the processor accumulator and Y
index register, the format used is accumulator + 100 * Y index
register. The routine seperates the sign byte and sets the sign
comparison byte, the contents of $61, the exponents of accumulator
No. 1 are loaded into the processor accumulator.

$DAE2 — Multiply Accumulator No. 1 by 10.

Communicating registers: Floating Point Accumulators No. 1 and No.
2.

Description: The contents of floating point accumulator No. 1 is
multiplied by 10 and the result is stored in floating point accumulator
No. 2.
$DAFE — Divide Accumulator No. 1. by 10.

Communicating registers: Floating Point Accumulators No. 1 and No.
2.

Description: The contents of floating point accumulator No. 1 is
divided by 10 and the result is stored in floating point accumulator No.
2.
$DBOF — Divide accumulator No. 2. by Accumulator No. 1.

Communicating registers: Floating Point Accumulators No. 1 and No.
2.

Description: This routine divides the contents of accumulator No. 2.
by the contents of accumulator No. 1. and puts the result in
accumulator No. 1. Before running this routine the sign comparison in

83

$6F should be set, this is done by exclusively ORing the contents of
the two sign bytes $66 and $6E and storing the result in $6F. The
exponent of the value in accumulator No. 1., stored in $61, should be
loaded into the processor accumulator prior to running this routine.

$DBA2 — Move Contents of Memory to Acc No. 1.

Communicating registers: Floating Point Accumulator No. 1.,
processor accumulator and Y index register.

Description: This routine takes a value stored in memory and loads
it into floating point accumulator No. 1. The two byte memory
address for the value is stored in the processor accumulator and Y
index register, the format used is accumulator + 100 * Y index
register. The routine seperates the sign byte and sets the sign
comparison byte, the contents of $61, the exponents of accumulator
No. 1, is loaded into the processor accumulator.

$DBC7 — Move Contents of Accumulator No. 1. to Memory.

Communicating registers: Floating Point accumulator No. 1. X and Y
index registers.

Description: The value in floating point accumulator No. 1. is stored
in a specified memory location by this routine. The two byte memory
address is stored in the X and Y processor index registers, the format
used is X index + 100 * Y index register. The routine merges the sign
byte to give the correct memory storage format (the first bit of first
byte = sign).

$DBFC — Transfer Contents of Acc No. 2. to Acc No. 1.

Communicating registers: Floating Point Accumulators No. 1. and
No. 2.

Description: The current contents of floating point accumulator No.
2., are copied into accumulator No. 1., the contents of accumulator No.
2 remain unchanged.

$DCOC — Transfer Contents of Acc No. 1., to Acc No. 2. with
Rounding.

84

Communicating registers: Floating Point Accumulators No. 1., and
No. 2.

Description: The contents of floating point accumulator No. 1., are

copied into accumulator No. 2., the contents of accumulator No. 1., are
then rounded and if necessary the exponent adjusted.

$DCOF — Transfer Contents of Acc No. 1., to Acc No. 2.

Communicating registers: Floating Point accumulators No. 1., and
No. 2.

Description: The contents of floating point accumulator No. 1., are
copied into accumulator No. 2., the contents of accumulator No. 1., are
then rounded and if necessary the exponent adjusted.

$DC58 — Performs ABS function.
Communicating registers: Floating Point Accumulator No. 1.

Description: The absolute value of the contents of floating point
accumulator No. 1. are returned to accumulator No. 1 by this routine.

$DC39 — Perform SGN function.
Communicating registers: Floating Point Accumulator No. 1.

Description: This routine returns the sign of a value stored in
floating point accumulator No. 1. If the value in accumulator No. 1., is

greater than O then a 1 is stored in accumulator No. 1., if it equals zero
then a 0, and if less than zero thena—1.

$DC5B — Compare Contents of Acc No. 1., to Memory.

85

Communicating registers: Floating Point Accumulator No. 1.,
processor accumulator and Y index register.

Description: The current contents of floating point accumulator tlc.
1., are compared to a floating point variable stored in memory. and the
processor accumulator set to a value dependant on whether the two
variables are equal or not. The two byte address for the floating point
variable in memory is stored in the processor accumulator and the Y
index register, the format used is accumulator + 100 * Y index. If the
two floating point variables are equal then the processor accumulator
is set to $00, and if not equal then it is set to $FF.
$DCIB — Convert Floating Point Variable to Fixed Point.

Communicating registers: Floating Point Accumulator No. 1.

Description: A floating point variable stored in accumulator No. 1.,
is converted to a fixed point format by this routine, the fixed point
value is stored in accumulator No. 1.

$DCCC — Perform INT function.
Communicating registers: Floating Point Accumulator No. 1.

Description: This routine converts a floating point variable stored in
accumulator No. 1., into an integer value, the result is stored back in
accumulator No. 1.

$DF71 — Perform SQR function.
Communicating registers: Floating Point Accumulator No. 1.

Description: The square root of a floating point variable stored in
accumulator No. 1., is calculated by this routine, the result also in
floating point format is returned in accumulator No. 1.

$DF78 — Raise Acc No. 2., to the power of Acc No. 1.

Communicating registers: Floating Point Accumulators No. 1
No. 2.

.. and

Description: The contents of floating point accumulator No. 2., is
raised to the power of a value stored in accumulator No. 1., the result
is placed in accumulator No. 1. Before using this routine the sign

86

comparison in $6F should be set, this is done by exclusively ORing the
contents of the two sign bytes $66 and $6E and storing the result in
$6F. The exponent of the value in accumulator No. 1., stored in $61,
should be loaded into the processor accumulator prior to running this
routine.

$DFED — Perform the EXP function.
Communicating registers: Floating Point Accumulator No. 1.

Description: This routine calculates ‘e’ to the power of the value in
floating point accumulator No. 1., and places the result in
accumulator No. 1.

$E094 — Perform the RND function.

Communicating registers: Floating Point Accumulator No. 1, plus
page zero locations $8B to $90.

Description: A random value is created by this routine and placed in
floating point accumulator No. 1. Prior to running the routine floating
point accumulator No. 1., contains a seed value used to initialise the
random number calculation routine, also memory locations $8B to
$90 contain the last random number generated.

$E261 — Perform COS function.
Communicating registers: Floating Point Accumulator No. 1.

Description: The COSine of a value, in radians, stored in floating
point accumulator No. 1., is calculated by this routine and the result
placed in accumulator No. 1.
$E268 — Perform SIN function.

Communicating registers: Floating Point Accumulator No. 1.

Description; This routine calculates the SINe of a value, in radians,

stored in floating point accumulator No. 1., the result is placed in

accumulator No. 1.

$E2B1 — Perform TAN function.

87

Communicating registers: Floating Point Accumulator No. 1.

Description: This routine calculates the TAN of a value, in radians,
stored in floating point accumulator No. 1., the result is placed in
accumulator No. 1.
$E30B — Perform ATN function.

Communicating registers: Floating Point Accumulator No. 1.

Description: This routine calculates the ATN of a value, in radians,
stored in floating point accumulator No. 1., the result is placed in
accumulator No. 1.
$E378 — Initialise System Vectors and Variables.

Communicating registers: none.

Description: All system vectors and variables are initialised by this

routine, it can be used together with its constituent subroutines to

reinitialise system variables and vectors prior to returning to a Basic
program from machine code.

88

USER CALLABLE KERNAL ROUTINES

NAME ADDRESS FUNCTION

HEX DECIMAL

ACPTR $FFA5 65445 Input byte from serial port

CHKIN $FFC6 65478 Open channel for input

CHKOUT $FFC9 65481 Open channel for output

CHRIN $FFCF 65487 Input character from channel

CHROUT $FFD2 65490 Output character to channel

CIOUT $FFA8 65448 Output byte to serial port

CLALL $FFE7 65511 Close all channels and files

CLOSE $FFC3 65475 Close a specified logical file

CLRCHN $FFCC 65484 Close input and output channels

GETIN $FFES 65512 Get character from keyboard queue
(keyboard buffer)

IOBASE $FFF3 65523 Returns base address of /0 devices

LISTEN $FFB1 65457 Command devices on the serial bus
to LISTEN

LOAD $FFD5 65493 Load RAM from a device

MEMBOT $FF9C 65436 Read/set the bottom of memory

MEMTOP $FF99 65433 Read/set the top of memory

OPEN $FFCO 65472 Open alogical file

PLOT $FFFO 65520 Read/set X, Y cursor position

RDTIM $FFDE 65502 Read real time clock

READST $FFB7 65463 Read 1/0 status word

RESTOR $FF87 65415 Restore default 1/0 vectors

SAVE $FFD8 65496 Save RAM to device

SCNKEY $FF9F 65439 Scan keyboard

SCREEN $FFED 65517 Return X, Y organisation of screen

SECOND $FF93 65427 Send secondary address
after LISTEN

SETLFS $FFBA 65466 Set logical, first, and second
addresses

SETMSG $FF90 65424 Control KERNAL messages

SETNAM $FFBD 65469 Set file name

SETTIM $FFDB 65499 Set real time clock

SETTMO $FFA2 65442 Set timeout on serial bus

STOP $FFE1 65505 Scan stop key

TALK $FFB4 65430 Command serial bus device to TALK

TKSA $FF96 65430 Send secondary address after TALK

UDTIM $FFEA 65514 Increment real time clock

UNTLK $FFAB 65451 Command serial bus to UNTALK

VECTOR $FF84 65412 Read/set vectored 1/0

89

USER CALLABLE KERNAL ROUTINES

The VIC operating system software has been specially designed to
allow the easy access of subroutines within it. These subroutines can
be used by a machine code routine calling either a ROM or RAM based
vector address. The required variables having been previously passed
to the subroutine via the processor registers. The main block of kernal
vector addresses are stored at the top of ROM memory, a list is shown
in Table 4. The smaller number of RAM vector addresses are stored in
page three of memory and a list of these is shown in Table 1. The
reason why some vector jump addresses are stored in RAM is that
they can be changed. By changing the vector addressed, routines
controlling the system 1/0 and interrupt handling can be
reconfigured. It should be noted that all the RAM vectors, except the
interrupt handlers, point to routines which are also pointed to be
ROM vectors. The following is a detailed description of each of the
vector subroutines together with their function and use.

$FF8A — Restore Old 1/0 Vectors.

Communicating registers: none.
Error Returns: none.

Stack Requirements: 2.
Preparatory routines: none.

Description: Restore default vector values for system subroutines
and interrupts.

$FF8D — Read and Set Vectored [/0.

Communicating registers: X and Y index registers.
Error Returns: none.

Stack Requirements: 2.

Preparatory routines: none.

Description: If this routine is called with the carry bit set, it will then
read the current contents of the RAM vectors and put them in a list
starting at a memory location pointed to by (X, Y). When this routine
is called with carry clear, the user list pointed at by (X, Y) is transferred
to the system RAM vectors. When using this routine the best practice
is to read first the entire contents of the vector table into a user
memory area, alter the desired vectors, then empy the contents back
into the system.

90

$FF90 — Control Kernal Messages.

Communicating registers: processor accumulator.
Error Returns: none.

Stack Requirements: 2.

Preparatory routines: none.

Description: This routine controls the printing of error and
diagnostic messages by the kernal. It is called by placing a value in the
accumulator. Bits 6 and 7 of this value control the message printing,
bit 7 is set for kernal messages, and bit 6 for control messages. Bits 0
to 5 designate the message, and point to an entry in the error message
tables.

$FF93 — Transmit Secondary Command.

Communicating registers: processor accumulator.
Error Returns: see routine $FFB7.

Stack Requirements:

Preparatory routines: $FFB1

Description: Sends a secondary address after ‘listen’ routine $FFB1.
This routine cannot be used to send a secondary address after a ‘talk’
command from routine $FFB4.

$FF96 — Transmit Secondary After ‘Talk'.

Communicating registers: processor accumulator.
Error Returns: see routine $FFB7.

Stack Requirements:

Preparatory routines: $FFB4

Description: Sends a secondary address for ‘talk. By loading the
accumulator with a number between 0 and 31, the user sends a
secondary address command over the [EEE with this subroutine. This
routine can only be used after $FFB4, it will not work after $FFB1.

$FF99 — Read/Set Top of Memory.

Communicating registers: X and Y index registers.
Error Returns: none.

Stack Requirements: 2.

Preparatory routines: none.

Description: When this routine is called with carry set, the pointer

91

to the top of RAM is read into .X and .Y. A call with carry clear will copy
the contents of .X and .Y into this pointer.

$FF9C — Read/Set Bottom of Memory.

Communicating registers: X and Y index registers.
Error Returns: none.

Stack requirements: 2.

Preparatory routines: none.

Description: A call to this routine with the carry bit set, causes the
pointer to the bottom of RAM to be read into .X and .Y. The initial
. value is always $400. If the routine is called with carry clear then the
contents of X and .Y are transfered to the bottom of memory
pointers.

$FFIF — Scan Keyboard.

Communicating registers: none.
Error Returns: none.

Stack Requirements:
Preparatory routines: none.

Description: This routine scans the keyboard, if a key is down, its
corresponding ASCIl code value is placed in the keyboard queue
(30277 to $0280). This is the same routine called by the interrupt
handling routines every 1/60 second.

$FFA2 — Set Timeout on |IEEE.

Communicating registers: processor accumulator.
Error Returns: none.

Stack Requirements: 2.

Preparatory routines: none.

Description: When the processor accumulator contains a 0 in bit 7,
timeouts are enabled by this routine. A 1 in bit 7 disables timeouts.
Timeouts are a method by which the VIC can poll an IEEE device for
data without hanging in a timeshake sequence. The device must
respond to DAV within 64 milliseconds. The VIC and CBM disks use
the timeout to communicate a ‘file not found status in the OPEN
command.

92

$FFAS — Input byte from IEEE Bus.

Communicating registers: processor accumulator.
Error Returns: see routine $FFB7.

Stack requirements: 13.

Preparatory routines: $FFB4 and $FF96.

Description: This routine handshakes a byte off the |IEEE bus. The
data is returned in the processor accumulator. It is assumed that the
device has been told to ‘talk’ by routine $FFB4 and it is possible that a
secondary address has been sent by the routine $FF96.

$FFA8 — Output Byte to IEEE Bus.

Communicating registers: processor accumulator.
Error Returns: see routine $FFB7.

Stack Requirements:

Preparatory routines: $FFB1 and $FF93.

Description: The accumulator is loaded with a byte of data to
handshake onto the IEEE bus. A device must be listening or status will
show a timeout error (see routine $FFA2). One character is always
buffered by this routine. When an ‘unlisten’ command is sent (by
routine $FFAE), the buffered character is sent with the EOIl line
asserted, the ‘unlisten’ command is then sent.

$FFAB — Command IEEE Bus to ‘Untalk’.

Communicating registers: none.
Error Returns: none.

Stack Requirements:
Preparatory routines: none.

Description: This sends an ‘untalk’ command to an IEEE device via
the IEEE bus.

$FFAE — Command IEEE Bus to ‘Unlisten’.

Communicating registers: none.
Error returns: none.

Stack Requirements:
Preparatoray routines: none.

Description: This sends an ‘unlisten’ command to an |IEEE device via
the IEEE bus.

93

$FFB1 — Command IEEE Device to ‘Listen’.

Communicating registers: processor accumulator.
Error Returns: see routine $FFB7.

Stack Requirements:

Preparatory routines: $FFB1

Description: The |IEEE command ‘listen with attention’ is performed
by this routine. The processor accumulator is loaded with a device
number between 0 and 30. This subroutine then ORs in bits to convert
the device number to a ‘listen’ address and then transmits this data as
a command on the |EEE bus.

$FFB4 — Command IEEE Device to ‘Talk'.

Communicating registers: processor accumulator.
Error Returns: see routine $FFB7.

Stack Requirements:

Preparatory routines: none.

Description: The IEEE command ‘talk with attention’ is performed
by this routine. The processor accumulator is loaded with a device
number betwen 0 and 30. This subroutine ORs in bits to convert the
device number into a ‘talk’ address and then transmits this data as a
command on the IEEE bus.

$FFB7 — Read 1/0 Status Word.

Communicating registers: processor accumulator.
Error Returns: none.

Stack Requirements: 2

Preparatory routines: none.

Description: Returns the current 1/0 status. Usually checked after
initiating any new communication to a channel. The bits in the byte
returned contain the following data:

ST ST Cassette IEEE/RW Tape

Bit Numeric Read Verify
Position Value + Load

0 1 Time out/write

1 2 Time out/read

2 4 Short block Short biock

3 8 Long block Long block

4 16 Unrecoverable Any mismatch

94

read error

5 32 Checksum error Checksum error

6 64 Endof file EOIl line

7 128 Endof tape Device not End of tape
present

$FFBA — Set Logical, First, and Second Address

Communicating registers: processor accumulator, Xand Y Index
registers:.

Error Returns: none.

Stack Requirements: 2

Preparatory routines: none.

Description: Setting logical file number, device address, and
command. The logical file number is used as a key by the system to
access data stored in a table by the open file subroutine. The device
address ranges from O to 30 and corresponds to the following VIC or
CBM devices:

Keyboard

Cassette No. 1.

Cassette No. 2. (unused on VIC)

CRT display

IEEE printer

VIC or CBM IEEE disk drive

Device numbers 4 or greater correspond to devices on the IEEE bus.

OPhWN-=O

Load the accumulator with the logical file number, X index register
with the device number, and the Y index register with the command.
The command is sent as a secondary address on the |EEE following
the device number during an attention sequence. IF the programmer
desires no secondary address to be sent, load Y index with a 2565.

$FFBD — Set File Name Information.

Communicating registers: processor accumulator, X and Y index
registers.

Error Returns: none.

Stack Requirements:

Preparatory routines: none.

Description: Should a file be opened without a file name, the name
length must be set to zero. Load the accumulator with the length, X
index with the low order address of the file name and Y with the high

95

order address. The file name address can be any valid memory
address where the string of characters corresponding to the file name
are stored.

$FFCO — Open Logical File.

Communicating registers: none.

Error Returns: 1,2, 4,5and 6.

Stack Requirements:

Preparatory routines: $FFBA and $FFBD.

Description: Open logical file to device. There are no arguments to
be set up for this routine. Both $FFBA (Set logical number, device
address and command) and $FFBD (Set file name information}) must
be called before calling this routine.

$FFC3 — Close Logical File.

Communicating registers: processor accumulator.
Error returns: none.

Stack Requirements:

Preparatory routines: none.

Description: Close a logical file to a device. When all 1/0 to a file is
completed this subroutine is called with the accumulator loaded with
the logical file number used in the ‘open’ subroutine $FFCO.

$FFC6 — Open Channel for Input.

Communicating registers: X index register.
Error Returns: 3, 5 and 6.

Stack Requirements:

Preparatory routines: $FFCO

Description: Assuming that a file has been opened by subroutine
$FFCO (open logical file),. it can be opened as an input channel. Of
course the characteristics of the device will determine if it is valid to

96

do so. The logical file number if put in the X index register. This
subroutine must be executed before subroutines $FFCF (input
character from channel) or $FFE4 (get character from keyboard
queue) are executed for a device other than the keyboard. If input
from the keyboard is desired, and there is no association to the logical
file number by a previous open file, then the call to this subroutine
may be dispensed with. On the IEEE this subroutine results in sending
a talk address followed by a secondary address if one was specified in
the open subroutine ($FFCO).

$FFC9 — Open Channel for Output.

Communicating registers: X index register.
Error Returns: 3, 5and 7.

Stack Requirements:

Preparatory routines: $FFCO.

Description: Assuming that a file has been opened by subroutine
$FFCO (open logical file), it can be opened as an output channel. Of
course, the characteristics of the device will determine if it is valid to
do so. This subroutine must be executed before subroutine $FFD2
{output character to channel) is executed for a device other than the
CRT. If output to the CRT is desired, and there is no association to an
open file by logical file number, then the call to this subroutine may be
dispensed with. On the |IEEE this subroutine results in sending a listen
address followed by a secondary address if one was specified in the
open subroutine ($FFCO).

$FFCC — Close Input and Output Channels.

Communicating registers: none.
Error Returns: none

Stack Requirements:
Preparatory routines: none.

Decription: After opening a channel and performing /0, this
routine closes all open channels and restores the default channels.
Default input is device 0 (keyboard) and output device 3 (CRT screen).
This routine may be called optionally by the programmer. An ‘untalk’
is sent to clear the input channel if the device fis on the IEE. An
‘unlisten’ is sent to clear the output channel. By not calling this
routine and leaving a listener addressed on the IEEE, multiple devices
can receive data on the bus. An example would be to address the
printer to listen and the disk to talk.

97

$FFCF — Input Character from Channel.

Communicating registers: processor accumulator.
Error Returns: see routine $FFB7.

Stack Requirements:

Preparatory routines: none.

Description: A call to this routine will return a character of data from
the channel set up by a call to subroutine $FFC6 (open channel for
input), or the default input channel if no other has been set up. Data is
returned in the accumulator. The channel remains open after the call.
In the case of the keyboard device, the cursor is turned on and
continues to blink until carriage return is typed. Characters on the line
are then returned one by one, by calls to'this routine. Finally carriage
return is sent and the process begins again.

$FFD2 — Output Character to Channel.

Communicating registers: processor accumulator.
Error Returns: see routine $FFB7.

Stack Requirements:

Preparatory routines: none.

Description: The data to be output is loaded into the accumulator. A
call to $FFC9 (open channel for output) sets up the output channel, or
if this call is omitted, data is sent to the default device which is
number 3, the CRT. The character can be transmitted to multiple
devices on the IEEE if a clear channel is not performed after the
corresponding open channel for output.

$FFD5 — Load RAM from Device.

Communicating registers: processor accumulator, X and Y index
registers.

Error Returns: 0, 4, 5,8and 9.

Stack requirements:

Preparatory routines: $FFBA and $FFBD.

Description: Load from device into RAM. On call accumulator = 0
for load, or accumulator = 1 for verify. The index registers (X, Y)
contain the address to load into for secondary address = 3. if the
secondary address = 0, 1 or 2 then the block will load into memory
starting at the address specified in the block header. On return the
highest RAM address loaded is contained in the index registers (X, Y).

98

$FFD8 — Save RAM to Device.

Communicating registers: X and Y index registers.
Error Returns: 5,8and 9

Stack Requirements:

Preparatory routines: $FFBA, $FFBD and FFSC.

Description: Saves memory from the bottom of memory (set by
routine $FFIC) to the memory address (X, Y) to a logical device. A file
name is not required for device 1 (the cassette deck) but an error
condition exists for any other device saved without a file name. Device
0 (keyboard), and device 3 (screen) are not defined for this routine.

$FFDB — Set Real Time Clock.

Communicating registers: processor accumulator, X and Y index
registers.

Error Returns: none.

Stack Requirements:

Preparatory routines: none.

Description: A system clock is maintained on a 1/60 second
interrupt basis. Three bytes are provided to count jiffies up to
5,184,000 or 24 hours, at which point the clock rolls over to zero. To set
the clock load the accumulator with the most significant, X index with
the next most significant and Y index with least significant byte of
time in jiffies.

$FFDE — Read Real Time Clock.

Communicating registers: processor accumulator, X and Y index
registers.

Error Returns: none.

Stack Requirements: 2.

Preparatory routines: none.

Description: The system clock can be read at any time. Three bytes
are returned containing a binary value corresponding to the time in
1/60 of a second. The accumulator contains the most significant, X
index-next most significant, and Y index the least significant byte.

99

$FFE1 — Check Stop Key.

Communicating registers: processor accumulator.
Error returns: none.

Stack Requirements.

Preparatory routines: none.

Description: This routine sets the Z flag if the STOP key on the
keyboard is pressed while the routine is called. All other flags are
maintained. If the stop key is not pressed then the accumulator
contains a byte corresponding to the last row of the keyboard scan.
The user can check for other key closures in this manner.

$FFE4 — Get Character from Keyboard Queue.

Communicating registers: processor accumulator.
Error Returns: none.

Stack Requirements:

Preparatory routines: none.

Description: Get buffered character from keyboard queue. This
subroutine removes one character from the keyboard queue and
returns an ASCII value in the accumulator. If the queue is empty, the
value returned will be zero. Characters are put into the queue by an
interrupt driver scan which calls the routine $FF9F. Obviously these
routines will not work if the interrupt is disabled in any way.

$FFE7 — Close Al Files.

Communicating registers: none.
Error returns: none.

Stack Requirements: 11.
Preparatory routines: none.

Description: With this subroutine the pointers into the open file
table are reset. Additionally, the routine $FFCC (close input and
output channel) is called to reset the 1/0 channels.

$FFEA — Increment Real Time Clock.

Communicating registers: none.
Error Returns: none.

Stack Reguirements: 2.
Preparatory routines: none.

Description: Normally this routine is called every 1/60th second to

100

keep the system clock register updated. If the user processes own
interrupts then this subroutine must be regularly called to update
time and keep the STOP key routine functional.

$FFED — Return X, Y Organisation of Screen.

Communicating registers: X and Y index registers.
Error Returns:

Stack Requirements: 2

Preparatory routines: none.

Description: Returns the constant organisation of the screen e.g. 22
columns in .X and 23 lines in .Y. This routine has two main uses, it
allows software to be written for the VIC 20 to be run on a future VIC
40 without any change in screen -handling routines, the program will
recognise which machine it is being run on. Secondly the 6561 allows
the user to change the screen organisation, within certain limits, this
routine can be used to check current organisation.

$FFFO — Read/Set X, Y Cursor Position.

Communicating registers: X and Y index registers.
Error Returns: none.

Stack Requirements: 2.

Preparatory routines: none.

Description: A call with carry set reads the current X, Y position of
the cursor on the screen into .X and .Y. A call with carry clear moves
the cursor to location X, Y on the screen as determined by the
contents of .Xand .Y.

$FFF3 — Return Base Address of /0.

Communicating registers: X and Y index registers.
Error Returns: none.

Stack Requirements: 2.

Preparatory routines: none.

Description: Returns the address of the page containing i/0 in X, Y.
This routine can be used with an offset to access memory mapped 1/0
devices in the VIC. This function and subsequent register accesses are
machine dependent.

101

SYSTEM INITIALISATION AND AUTO POWER UP

When the VIC is switched on, a pre-defined initialisation sequence
is executed. This initialisation sets the system up so that all RAM
variables and vectors are correctly set; screen 1/O and keyboard
correctly defined; memory checked and the Basic interpreter set in
the direct input mode. This initialisation sequence is triggered by the
power on reset circuit. The reset circuitry on the VIC consists of a 555
timer 10 wired in such a way that when power is first switched on the
reset line is held low for a short period. When the processor reset line
is pulled low momentarily (minimum six clock cycles) it causes the
processor to start execution of a program whose starting address is
stored in locations $FFFC and $FFFD. The start routine whose address
is contained in the reset sector is located at $FD22.

The start routine is typical of the great flexability inherant in the
design of the VIC. It allows two options, go-to the initialisation routine
contained in ROM expansion memory. The normal initialisation
routine (located at $FD2F) is used whenever the VIC is to run
programs in Basic or Basic programs with machine code subroutines.
The initialisation code sets up the OS RAM vectors, the I/O devices,
initialises the 6561 and then jumps to the start of Basic at location
$C000.

The area of memory allocated for memory expansion on the VIC can
be divided into three sections. Memory space reserved exclusively for
ROM memory, space reserved for either ROM or RAM memory, and
that reserved exclusively for RAM memory expansion. The section of
expansion memory that is of interest in its connection with system
initialisation is that reserved exclusively for ROM memory, locations
$A000 to $BFFF. The first function of the start routine at $FD22 is to
check if there is a ROM inserted in address space $A000. It does this by
testing for a string of 5 characters starting at a specific location on the
ROM. The sequence of five bytes searched for is:

Address — $A004 contents — $41 ASCI| character — ‘A’
$A005 $30 ‘0’
$A006 $C3 rvs ‘'C’
$A007 $C2 rvs ‘B’
$A008 $CD rvs ‘M’

If the start routine finds this character string then program control
jumps to an address stored in the first two bytes of the ROM, $A000
and $A001, the user written ‘hard start’ initialisation routine. A
second jump address is stored in locations $A002 and $A003, this is

102

the ‘warm start’ routine which returns program control to Basic, it is
called when the Restore key is pressed. If the 'AOCBM’ character
string is not found then the zero flag is set and the initialisation
routine at $FD2F called.

This feature of the VIC will allow the machine to be used in a wide
range of special applications where the programmer requires the
machine to automatically power up into his program. All the
commercial ROM based games packs use this method. The most
interesting application is the enhancement or alteration of Basic by
adding extra commands or changing the operation of existing
commands. The example shown in Appendix 2 demonstrates how
extra commands can be added, the example adds a range of graphic
commands to Basic. This program can easily be modified to run any
commands required by the user, simply by adding the command
name and the start address of its associated subroutine into the
command tables starting at $A056. Existing commands involving
system 1/0 can be modified if those commands use one or more of the
RAM vector addresses. This is done by simply changing the RAM
vector address so that it points to a routine in the $A000 ROM, this
routine then performs the new version of that routine. An example
would be if the programmer required the VIC to communicate with
devices using a different communications system, e.g. Centronics, to
that provided on the VIC (serial IEEE, or RS-232). In this case all the 1/0
routines in the kernal would have to be changed so that data was
input and output in the right format. The new versions of the 1/0
routines are put in the $A000 ROM and the initialisation routine
simply sets up the correct new RAM vector addresses before
returning to the main initialisation routine and Basic.

103

SYSTEM WEDGES

A system wedge is a machine code routine inserted into the normal
system software, allowing the user to either modify. the system
operation or monitor system functioning. There are two main
positions where code can be wedged into the VIC system software,
they are:

Interrupt wedge — code inserted into one or other of the two
interrupt handling routines (NMI or IRQ) using the interrupt RAM
vector jump addresses. A wedge routine inserted into the regular
60Hz IRQ interrupt can be used to scan for I/O input or perform
background processing.

RAM vector wedge — a wedge routine inserted into one or more of
the RAM vectors could be used to change the 1/0 configuration or file
handling capabilities of the system.

CHARGOT wedge — this is a wedge inserted into the CHARGOT
subroutine in page zero memory. Such a wedge can be used to
intercept each Basic command in a program as it is executed. The
principle use for such a wedge is to add extra commands to the Basic
interpreter.

Three routines are required to implement a system wedge;

1 — the wedge must be initialised, this is done by a routine
inserting a jump address to the wedge code into the CHARGOT
routine or replacing an existing RAM vector address.

2 — the wedge code, this ‘code performs the required function
which amends or replaces the system function into which it is
inserted. If an interrupt wedge is used, the wedge code should be
terminated with a jump to the address originals contained in. the
interrupt vector. With a RAM vector wedge the wedge code can be
terminated with either a jump to the normal function subroutine, or
simply terminated with an RTS instruction, depending on the
programmers requirements. A CHARGOT wedge is terminated with
the section of the CHARGOT code which is replaced by the wedge
jump address followed by an RTS instruction.

3 — when the wedge code is finished with it must be disabled by
returning the vector addresses to normal or restoring the normal
CHARGOT routine. The following system subroutines can be utilised
to do this operation:

104

$E45B — restore vectors
$E3A4 — restore CHARGOT and zero page
Examples of these routines are shown in the following programs.

105

Lac

E378
E37B
E37E
E381
E383
E384

E287
E3B?
E38B
E38D
E390
E392
E3%94
E376
E398
E399
E39B
E39C
E39E
E39F
E3AO
E3A1
E3A2
E3A3

E3A4
E3A6
E3AB
E3AA
E3AC
E3AE
E£380
E3B2
E3B4
E2B6
E3B8
E3BA
E3BC
E3BE
E3CO
E3C2
E3C4
E3C7
£3C9

CODE

20
20
20
A2
A
4C

Eb
DO
E6
AD
ce
BO
ce
FO
38
E9
38
E9
60
80
4F
c7
52
58

5B
Ag
04

74

E4

E4

ca

EA

E3

LINE

INIT

INITAT

CHDGOT

CHDRTS

INITCZ

MOVCHG

JSR
JGR
JGR
LDX
TXS
JMP

INITV i GO INIT VECTORS

INITCZ i G0 INIT CHARGET & Z-PAGE
INITMS ; 60 PRINT INIT MESSAGE
#STKREND-256 ; SET UP END OF STACK

READY i 60 TO READY

CHRGET+7
CHDGOT
CHRGET+8
60000
#:
CHDRTS
“I
INITAT

#0

#3DO

BYT 128, 79,199, 82, 88

LDA
STA
STA
LDA
LDY
STA
STY
L.DA
LDY
STA
sSTY
L. DA
LDY
STA
STY
1. DX
LDA
STA
DEX

#76

JMPER

USRPOK

#FCERR

#2FCERR

USRPOK+1
USRPOK+2
#IGIVAYF
#:GIVAYF

ADRAY2 -
ADRAY2+1
#:FLPINT
#FLPINT

ADRAY1

ADRAY1+1
#$#INITCZ-INITAT-1
INITAT, X
CHRGET, X

106

Lac

E3CA
E3CC
E3CE
EGDO
E3D2
E3D4
E3DS
E3D8
E2DA
E3DD
E3EQ
E3E2
E3E4
E3ES
EJES
E3EA
E3EC
EZED
E3FO
E3F2
E3F4
E3F 6
E3F8
E3FA
EGFB
E3FD
E3FF
E401
E403

E404
E406
E408
E40B
E40D
E40F
Eq12
E414
£419
E417
E418
Ed41A
E41C
E41F
€421
E423
E426

107

CODE

"F8

03
53
00
&8
13
18
01
FD
FC

16

2Cc
o8
36

1E
37

o1

FF

FF

ca

DD

cB

LINE

USEDEF

INIT20

INITMS

BPL
LDA
STA
LDA
STA
STA
STA
LDX
STX
8TX
LDX
STX
SEC
JSR
STX
STY
SEC
JSR
STX
STY
STX
STY
Loy
TYA
STA
INC
BNE
INC
RTS

LDA
LDY
JSR
LDA
LDY
JER
L.DA
SEC
SBC
TAX

snC
JSR
LDA

JER
JMP

MOVCHG
#STRSIZ
FOURG
#0
BITS
CHANNL
LASTPT+1
#1
BUF~-3
BUF-4
#HTEMPST
TEMPPT
i READ BOTTOM OF MEMORY
SFFoC
TXTTAB
TXTTAB+1

iNOW TXTAB HAS IT

$FF99
MEMSIZ
MEMSIZ+1
FRETOP
FRETOP+1
#0

+READ TOP OF MEMORY

(TXTTAB)Y
TXTTAB
INIT20
TXTTAB+1

TXTTAB
TXTTAR+1
REASON
#FREMES
#-FREMES
STROUT
MEMSIZ

TXTTAD

MEMSIZ+1
TXTTAB+1
LINPRT
#:WORDS
#>WORDS
STROUT
SCRTCH

LoC

E429
E434
E435
E436
E437
€44D
E44E

E44F
£451
E453
E455
E457
E459
E45B
E45B
E45D
E460
E463
E4464
E466

CODE

20
oD
00
93
2A
oD
00

42

2A

E4

LINE

WORDS

.BYY ’ BYTES FREE’, 13,0

FREMES . BYT 147, *##%#% CBM BASIC V2 ##%%’

BVTRS

i
INITY
INITV]

.BYT 13,0

. WOR NERROR, NMAIN, NCRNCH. NGPLOP,
NGONE, NEVAL

LDX #INITV-BVTRS-1 ; INIT VECTORS
LDA BVTRS, X

STA 1ERROR, X

DEX

BPL INITV1

RTS

108

112 — Overview of 6561 Interface Chip
115 — Internal Registers of the 6561
120 — 6561 Display Modes

134 — Display Format Control

136 — Video Memory Address Control
137 — Colour Control

144 — 6561 Sound Generators

3 THE 6561 VIDEO INTERFACE CHIP

110

ig—-

og—

6a

8a

¢a
[
sa
va
£a
7Q ———q
1q ——

0a ——|

_ 3aow _

NN B
ONAS dWO0D

8no10d

300030

A 10d

GNNOS

-

¥yNo10d
HVYHO

=]

| 3NOL

<

«

Q
1

—
S

dWO2

— vdO

(o] [

prmnnny

1

dWD

H3ILNNOD
TVYOULYIA

3@0930

ONAS

HILNNOD

ZIYOH

|

ADDRESS
COMPUTATION

|

HOLVHINZD %D070

318V UVAVY
sng

I

wiLNNOD |

XIH1IVW 03aIA

W

ov

v

£V

v
sv
v

v

8v
ov

o

(184
v

£1v

Fig. 13 — Block diagram of the 6561 Video Interface chip.

111

OVERVIEW OF THE 6561 VIDEO INTERFACE CHIP

Many of the VIC's outstanding features are attributable to a single
integrated circuit, the 6561 video interface chip. This single device
provides all the circuitry necessary to generate colour programmable
character graphics, with high screen resolution. The 6561 also
incorporates sound effects generation, analogue to digital conversion
for joysticks, and light pen capability. All these functions are under
direct programmer control via the 16 addressable control registers of
the 6561, to use these functions an understanding of the 6561's
operation is essential. The video interface chip has three seperate
functions, these are:

1 — Control and generation of the CRT display.

2 — Generation of the master oscillator clock.

3 — Specialised I/0 for use in the video-games environment.

Only functions 1 and 3 are of interest to the programmer, the
generation of the master oscillator clock is purely a hardware feature
which ensures that all the system timing is synchronised with that of
the 6561.

The control and generation of a colour display on a TV or monitor is
the primary function of the 6561. To do this it must access four
seperate areas of the VIC's memory space, the location and size of
two of these areas is under programmer control. The four memory
areas each have their own function in display generation, they are:

1 — Video RAM character pointer, each location corresponds to a
position on the screen, location 0 in this section of RAM contains the
ASCIl code of the character displayed in the top left corner of the
screen, location 1 has the next character to the right and so on for all
the character positions on the screen. On the standard VIC with no
memory expansion, this section of memory is 506 bytes long starting
at location $1EQ0, if there is more than the bottom 3K memory
expansion then the starting location is $1000.

2 — Colour pointer, this section of RAM is identical in size to the
video character pointer and contains data on the foreground and
background colour of each character. Location O in this section
contains the foreground and background colour of the character in
location O of the character pointer (i.e. top left character on the
screen), and so on for all character positions on the screen. On the
standard VIC with no memory expansion this section of memory is
506 bytes long starting at location $9600, if there is more than 3K of
expansion memory then the starting address is $9800.

112

3 — Character generator, this section of memory contains the
pattern of dots used to display each of the 255 different characters.
the dot pattern for each character is contained in eight consecutive
memory locations (this can be set to 16 consecutive locations if
required), each bit of each byte corresponding to a dot position in that
character, 1 = a dot and 0 = a space. The character generator in
normal operation is stored in a 4K ROM, starting address $8000. By
re-defining the character generator start address to point to 4K block
of RAM a user definable character generator can be created.

4 — 6561 control registers, these registers control the way in
which the 6561 operates and are located in 16 consecutive memory
locations {(their address is defined by hardware). The addresses used
lie between $9000 and $300F.

In normal operation the kernal initialisation routines set up the
registers of the 6561 to give the standard VIC display format, 23 lines
by 22 columns, using the character generator at location $8000. The
routines then put space characters into all locations in the character
pointer RAM and set all locations in the colour pointer to give blue on
white characters, control register 16 is set to give a white background
and a cyan border.

To understand the operation of the VIC more completely, consider
the diagram in Figure 8. This shows the three areas of memory used,
video RAM, colour RAM, and character generator for a standard 22
column, 23 line display. Each of the 506 locations in the video RAM
contains a code value or pointer into the character generator, in the
diagram the location corresponding to column 22, line 10 contains the
value 45. This means that character number 45 is displayed in that
character space, the same location in the colour RAM contains the
value 2, this makes the character red. Teh character number is used as
an index into the character generator. The VIC fetches each of the 506
video RAM location values and performs an address computation on
each of them to locate the desired value of the address of the eight
bytes used to store each character in the character generator. The
address computation is quite simple, if 8x8 characters are being used
then the character code value (45 in the example) is multiplied by
eight and the result added to the start address of the character
generator (this base address is contained in the 8561 control register
No.5.). The eight bytes of the character generator pointed to by this
address, are transfered (one byte per scan line) via an internal shift

113

register on the 6561 to the video display as a serial bit stream. This bit
stream combined with control pulses from the 6561 comprises the
composite video output signal of the VIC. This signal is fed via a
modulator to the TV set which then generates the required display.

Besides controlling the video output of the VIC the 6561
implements a series of interactive 1/O features which are designed
principaly for games applications. There are three of these features,
they are:

1 — Sound generation system consisting of: three independently
programmable tone generators, a white noise generator, and an
amplitude modulator. The sound generation system can be used to
create special sound effects and can even be used to play music of
acceptable quality.

2 — Two anaologue to digital converters, these are intended for use
with a potentiometer or joystick input, ideal for moving the cursor or
games character about the screen.

3 — Light pen input, a photocell connected to this input and
pointed to a part of the screen will return the screen co-ordinates of
that point in two of the 6561 internal registers, ideal for interactive
non keyboard input.

114

THE INTERNAL REGISTERS OF THE 6561

The sixteen eight bit control registers within the 6561 enable the
microprocessor to control all the operating modes of the VIC. These
control registers comprise sixteen successive memory locations
starting at location 36864, and are accessible from either Basic (using
PEEK and POKE) or machine code programs. The sixteen control
registers of the 6561 are as follows:

Control register No. 1.

Location — Hex $9000 Decimal 35864

Contents in normal VIC operating mode — Decimal 12

Bits O to 6 of this register determine how far from the left side of the
TV screen the first column of characters will appear. It is used to
horizontally centre various sizes of video matrices on screen. Bit 7
when set to 1 enables the interlaced scan mode. interlacing can be
used with the appropriate hardware to display the VIC screen over a
normal TV picture, this could be used for video titleing.

To demonstrate the horizontal movement of the screen by changing
the contents of this register enter and run the following program:
10 FOR Q=0T040

20 POKE 36864,Q

30 FOR X=0TO1000:NEXT X :delay

40 NEXT Q .

50 POKE 36864,12 : restore to normal

To demonstrate the effect of an interlaced display enter this
command:
POKE 36864,140

Control register No. 2.
Location —Hex $3001 Decimal 36865
Contents in normal VIC operating mode — Decimal 38

Determines how far from the top of the TV screen the first row of
characters will appear. It is used to vertically centre various sizes of
video matrix on the screen.

To demonstrate the vertical movement of the screen by changing the
contents of this register enter and run the following program:

10 FOR Q=0T0O150

20 POKE 36865,Q

30 FOR X=0TO100:NEXT X :delay

115

40 NEXT Q

50 POKE 36865,38 .restore to normal
Control register No. 3.

Location — Hex $3002 Decimal 36866

Contents in normal VIC operating mode — Decimal 150

Bits 0-6 determine the number of columns in the video matrix, thus for
a 22 column screen bits 0-6 will contain the value 22. Bit 7 is part of the
video matrix address stored in control register No. 6, this bit is
normally set to logical ‘1’ (i.e. add decimal 128 to value in bits 0-6).

To demonstrate the use of this register to change the number of
columns displayed on the screen enter and run the following
program:

10 FORQ=128TO 155

20 POKE 36866,Q

30 FOR X=0TO1000:NEXT X :delay

40 NEXT Q

50 POKE 36866,150 :restore to normal

Control register No. 4.
Location — Hex $3003 Decimal 36867
Contents in normal VIC operating mode — Decimal 174

Bits 1 to 6 set the number of rows in the video matrix. Bit 0 is used to
select either 8x8 characters (bit 0 = 0) or 16x8 character matrices (bit O
= 1). Bit 7 is the least significant bit of the raster line number found in
control register No. 5.

To demonstrate the use of this register to change the number of lines
displayed on the screen enter and run the following program:
10 FORQ=128TO 180 STEP 2

20 POKE 36867,Q

30 FOR X=0TO1000:NEXT X :delay

A0NEXT Q

50 POKE 36867,174 :restore to normal

Control register No. 5.
Location — Hex $9004 Decimal 36868
Contents in normal VIC operating mode — Variable

This register contains the number of the line currently being scanned
by the TV raster beam.

116

Control register No. 6.
Location — Hex $3005 Decimal 36869
Contents in normal VIC operating mode — Decimal 240

Bits 0 to 3 determine the starting address of the character cell space
(note that these bits form lines A13 to A10 of the actual address). Bits
4 to 7 together with bit 7 of control register No. 3., determine the
starting address of the video matrix (these bits form address lines A13
to A9 of the actual address).

Control register No. 7.
Location —Hex $3006 Decimal 36870
Contents in normal VIC operating mode — Decimal 0

Contains the latched horizontal position of the light pen

Control register No. 8.
Location — Hex $9007 Decimal 36871

Contents in normal VIC operating mode — Decimal O

Contains the latched vertical position of the light pen

Control register No. 9.
Location — Hex $9008 Decimal 36872
Contents in normal VIC operating mode - Decimal 255

Contains the digitised value of input on potentiometer No. 1., (see
section on joysticks for details on operation and use).

Control register No. 10.
Location — Hex $9009 Decimal 36873
Contents in normal VIC operating mode — Decimal 255

Contains the digitised value of input on potentiometer No. 2., (see
section on joysticks for details on operation and use).

Control register No. 11.
Location — Hex $900A Decimal 36874
Contents in normal VIC operating mode — Decimal 0

17

Bits 0 to 6 set the frequency of the first audio oscillator.
Bit 7 turns the oscillator on (=1) or off (=0).

Control register No. 12.
Location — Hex $900B Decimal 36875
Contents in normal VIC operating mode — Decimal Q

Bits 0 to 6 set the frequency of the second audio oscillator. Bit 7 turns
the oscillator on (=1) or off (= 0).

Control register No. 13.
Location — Hex $900C Decimal 36876
Contents in normal VIC operating mode — Decimal 0

Bits 0 to 6 set the frequency of the third audio oscillator. Bit 7 turns the
oscillator on (=1) or off (=0).

Control register No. 14.
Location — Hex $300D Decimal 36877
Contents in normal VIC operating mode — Decimal 0

Bits 0 to 6 set the base frequency for the pseudo white noise
generator. Bit 7 turns the noise generator on (=1) or off (=0).

Control register No. 15.
Location — Hex $900E Decimal 36878
Contents in normal VIC operating mode — Decimal O

Bits 0 to 3 set the volume of the composite audio signal (note that at
least one sound generator must be turned on for any sound to be
produced). Bits 4 to 7 contain the auxiliary colour code used in
conjunction with the ‘Multicolour mode’ of operation.

Control register No. 16.
Location — Hex $900F Decimal 36879
Contents in normal VIC operating mode — Decimal 27

Bits 4 to 7 select one of sixteen colours for the background common to
all characters on the screen (essentially they set the colour of the
background area within the video matrix). Bits 0 to 2 select one of
eight colours for the exterior border area of the screen, this is the area
outside the video matrix. Bit 3 determines whether the video matrix is
to be displayed as different coloured characters on a common
background colour (bit 3=1), or inverted (bit 3=0) where all

118

characters have the same colour, but different background colours
determined by the code in the colour RAM. Bit 3 has no effect when
the ‘Multicolour’ mode is selected on the 6561, the other functions of
control register No. 16., also vary in this mode.

To demonstrate the changing of the border colour (there are eight
different colours) by bits 0-2, run the following program. Note that the
screen colours are retained in their normal mode of blue characters on
a white background.

10 FORQ=0TO7

20 PIKE36879,Q+24 :change border colour
30 FORX=1TO1000:NEXTX :delay

40 NEXTQ

50 GOTO10

The sixteen different background colours are selected by bits 4-7 and
the following program demonstrates the changing of the background
colour, note the cyan border colour and the blue character colour
remain unchanged.

10FORQ=0TO255STEP16

20 POKE36879,Q+11 :new background colour

30 FORX=1TO1000:NEXTX
40 NEXTQ
50 GOT10

Bit 3 controls whether characters are displayed on a common
background colour, or inverted so that all characters are the same
colour but the background is a different colour. The following short
program demonstrates this.

10 POKE36879,PEEK(36879)AND247 ‘invert background
20 FORQ=-TO1000:NEXTQ :delay

30 POKE36879,PEEK(36879)0OR8 :restore to normal
40 FORQ=0TO1000:NEXTQ

50 GOTO10

119

6561 DISPLAY MODES

The VIC has two display modes, normal text mode and user
definable character mode. The modes are determined by the position
in memory of the character generator. There are also two modes of
colour operation, high resolution, and multicolour. The VIC is thus
capable of several permutations of colour and display mode.

The two display modes depend on whether the normal internal
ROM based character generator is used or a user definable RAM
character generator. The position of the character generator within
processor memory space is determined by the contents of bits 0-3 of
control register No.5. These four bits form bits A10 to A13 of the actual
character generator address as follows:

1 0

1 1 xXx XX XX X XXX
$ 3 4 0 0

The normal contents of bits 0-3 of control register No. 5., are zero, the
way the VIC is configured, this gives a character generator address of
Hex $8000 (decimal 32768). Starting at this location is a 4K ROM, the
character generator. This contains the actual dot pattern for each of
the 256 different characters which can be displayed. The 4K character
generator ROM actualy contains two seperate character generators
each occupying 2K of ROM. The first of these two character
generators which starts at address Hex $8000 (decimal 327680
contains the dot pattern for the 128 normal upper case and graphics
characters plus the 128 reverse field versions of the same characters.
The second character generator starts at location $8800 (decimal
34816) and is identical to the first except that part of the graphics
character set is replaced by lower case characters. When the second
character set is enabled the VIC will normally display in lower case
characters rather than the normal upper case, upper case will be
displayed with the shift key depressed. The second character
generator can be enabled normally, by pressing the shift key and the
Commodore logo key simultaneously. Alternatively one can change
the contents of control register No. 5., thus:

POKE 36869,242 :set lower case display mode

POKE 36869,240 :set upper case display mode

This simply shifts the starting address of the character generator up
2K in memory thereby accessing the second character generator.

120

The character generator starting address in control register No. 5.
can be changed so that the character generator is located in RAM,
thereby allowing user definable characters to be created. The starting
address of the user definable RAM character generator on the VIC can
be any 2K (4K if 8x16 characters are used) block or RAM, located
between address Hex $1000 and $3000. It should be located at the
highest possible address, and protected from being overwritten by
Basic by lowering the top of memory pointers, to protect the RAM
space used by the character generator. The setting up of control
register No. 5., has the following rules:

1 — The starting address is always located at the beginning of a 1K
block.

2 — If the contents of bits 2 and 3 are both zero then the starting
address defaults to the ROM at $8000 plus the offset stored in bits O
and 1, this offset is in increments of 1K.

3 — Bits 2 and 3 contain the starting address in increments of 4K.

Thus to put the user definable character generator to start at 11K up
in memory, — Hex $2000 — 2x 4K block plus 3x 1K block — then bits 0
to 3 would be set up as follows:

Bits 3 2 1 0
Binary contents 1 0 1 1
representing 2x 4K blocks 3x 1K blocks

The user definable character generator is very important, since it
not only allows special graphics characters to be created, but it also
allows high resolution point plotting on the VIC. This allows a graph
or display to be created with a resolution of 176 points in the
horizontal by 184 points vertically, sufficient to give a very good
quality display. High resolution point plotting is achieved by
programming techniques using the user definable character
generator. The use of the RAM character generator must be
understood before these techniques can be explained.

The first stage in creating a user definable character set, is to
allocate a block of RAM memory for storage of the character
generator. If characters on an 8x8 matrix are being displayed then
2048 memory locations are required, if an 8x16 matrix is to be used
then 4096 locations are required. Since a standard VIC has only 3584

121

+2+ v +8+91+26+¥9+821
t t t ottt

elelelelsle]e]:

H=0+0+0+8491+0+0+0

[[[[ele] [[¥

=0+0+0+8+91+0+0+0
4_* P11]

+8+9t+2E+0+0
t ottt

|
e RRRL T

+w+m.+wm+!..+a
tr ottt

ejejelele] |

6GZ= | + 2+ v+ 8+91+2E++94821

| T |

o0 12 28 €2 o T o 2

t t

‘ele[ele]s[ele]80

Fig. 14 — Conversion of a character into numerical values.

NOD00000
N0
OO0
0
oo
OO0
OO0
ooojoejelele
P L 2 € ¥ S 9 (L
° °
° °
° °
oloje/ojo]e
° °

° o |
oo
o L 2 € v S 9 (L

N M T W~

N M N O~

Fig. 15 — Examples of layout in design of characters.

122

RAM memory locations available to the user, an 8x8 matrix user
definable character generator using 2048 of these locations is the only
one feasible. The user RAM on a standard unexpanded VIC starts at
memory address 4096 and goes on to address 7679. The character
generator can be programmed to start at any of the following
addresses within that range; 4096, 5120, 6144, or 7168. Since 2048
locations are required for the character generator the only possible
starting location is 5120, this leaves 1024 bytes free for user programs
(not much, purchase of the standard 3K RAM expansion module is
strongly recommended, it's use will not change the start address
recommended above). This area of RAM chosen for use by the
character generator must be protected from being overwritten by a
Basic program or data. If this happened the display would be
destroyed. The user definable character generator can be protected
from being overwritten by lowering the top of memory pointers,
thus:

10 POKE 51,255 : POKE 52,19

11 POKE 55,255 : POKE 56,19

12 CLR

The next stage is to put the data on each character into the new
character generator, by using POKE commands or machine code load
statements to put information into the 2048 memory locations.
Before this can be done each of the new characters must be designed,
this entails drawing each character on an 8x8 grid, see Fig.15. Once the
character has been designed it can be converted into the block of
eight numerical values for storage in the character generator. Each
line in the 8x8 grid corresponds to a byte of data, and each of the eight
bits in that byte corresponds to a dot or column position on that line.
Information is stored in memory in binary, thus by considering each
bright dot to be a logical ‘1" and each space a logical ‘'0’, a line of dots in
each character can be converted into a numerical value, the way this is
done is shown in Fig.14. Some examples of character designs and their
conversion to numerical values are shown in Fig.16. From these values
a table can be created, one column having the character generator
address, and the corresponding entry in the second column having
the value to be put into that location. The table is divided into blocks
of eight entries, each block containing the data for one character. Each
of these blocks of eight entries is numbered starting at 0 and going up
to 255. These numbers correspond to the ASCIl or character code
numbers stored in the video RAM when the characters are displayed.
An example table using the character designs in Fig.15,is shown in Fig.

123

7 6 5 4 3 2 10

] ~0+0+0+0+0+0+0+0=0
1 L JE ~0+0+0+16+8+0+0+0 =24
2 o000 ~0+0+32+16+8+4+0+ 0 =60
3 000 0 0 O |-0+64+32+16+8+4+2+0=12%
i/ 0 000 0 0 @ @-128+64+32+16+8+4+2+1=255
5 o0 ~0+0+0+16+8+0+0+0=24
6) ® ~0+0+324+0+0+4+0+0=3%
7 () ® |~0+64+0+0+0+0+2+0=66
76 5 4 3 2 1 @

@ { 2K J —~0+0+0+16+8+0+0+0 =24
1 o ® —~0+0+0+16+0+4+0+0=20
2 o ® —-04+0+0+16+0+4+0+0=20
3 o ® ~0+0+0+16+0+0+24+0=18
4 L 2N —-0+0+32+16+04+0+ 0+ Q=48
5 o000 -0 +64+32+16+0+0+ 0+ =112
6 L N — 0 +64+32+0+0+0+ 0+ Q=%
7 —-0+0+0+0+0+0+0+0=0

5120 — O

5121 — 24

5122 — 60

5123 — 126

5124 — 255 Character # 1

5125 — 24

5126 — 36

5127 — 66

5128 — 24

5129 — 20

5130 — 20

5131 — 18 Character # 2

5132 — 48

etc.

Fig. 16 — Conversion of user characters into a character generator table.

124

16. The table need only contain the number of characters actually
required, all 255 possible character blocks do not have to be filled in. It
is advisable that the table starts at the first location in the character
generator, any gaps left should be filled with zeros. If the character
generator is being loaded from a Basic program then the values in the
tables are best stored as DATA statements, these values are then
entered into memory using POKE commands, thus:

20FOR I=0TO 2048

21 READA

22 IFA="*"THEN 30

23 POKE5120+1,A

24 NEXT

30 END

100 DATA 24, 20, 20, 28,48,112,96, 0

110 DATA 0, 24,60, 126, 255, 24, 36, 66
120 DATA 255, 126, 60, 24, 24, 60, 126, 255
130 DATA *

In the majority of applications alphanumeric characters are
required in addition to user defined graphics characters, in such cases
part of the data in the ROM based character generator must be
transferred to the new RAM character generator. All the alphanumeric
characters plus the VIC graphics characters (or lower case depending
on which of the two character generators is accessed) are contained
in the first 128 characters of the character generator, the remaining
128 characters are the reverse field versions of the first 128 characters.
The first 128 characters of the ROM character generator are transfered
to the new RAM character generator using a combination of PEEK and
POKE commands thus:

20FORI=0TO 1024

30 POKE 5120+1,PEEK(32768+1)

40 NEXTI

This leaves 128 possible user definable characters starting at
address 6155, these characters can be filled as described above, and
will have an ASCHl code starting value of 128. An example of the
routine to enter the character generator data will be as follows:

20FORI=0TO 1024

21 POKE 5120=I,PEEK(32768+1)

22 NEXTI i

125

30 FOR |=0TO 1024

31 READA ‘
32 IFA="%'THEN200 ’*
33POKE 6144=1,A

3ANEXT °

60 REM DATA FOR ASCII CODE CHARACTERS 128, 129, 130
100 DATA 24, 20, 20, 18,48, 112,96, 0
110 DATAO, 24, 60, 126, 255, 24, 36, 66
120 DATA 255, 126, 60, 24, 24, 60, 126, 255
130 DATA#* .72

Having loaded the user definable character generator it can be used,
it will remain in the VIC until the machine is switched off and can thus
be used by more then one program. To use the RAM character
generator two of the 6561 registers must be changed, thus:

200 POKE 36869, 253

210 POKE 36866, PEEK(36866)OR128

Once the user definable RAM character generator has been set up
and the 6561 registers changed to utilise the new character generator
it can be used to generate special displays. If POKE commands are
used to place the characters in the video RAM memory then the ASCII
code value of the new characters is used. If the new characters are
incorporated into strings then it is essential to know which character
in the normal character set the new character replaces. This can be
determined by using the table of VIC ASCIl codes and looking for the
character with the same code value as the new character. When the
program is written the normal characters are inserted into the string,
when the program is run they will be automatically replaced by the
new characters. It is important to note that when using POKE
commands, the colour RAM location corresponding to the location
where the character is to be displayed must also be set to give the
required colour, otherwise the display will be white on white and
therefore invisible. To restore the normal function of the VIC ROM
character generator use the following two lines:

500 POKE 36869,240

510 POKE 36866,150

High resolution point plotting uses exactly the same principles as
the generation of user definable characters. It entails filing the video
RAM with each of the 255 character codes (only half the screen can be
used with 8x8 characters). The RAM character generator can then be

126

used as a high resolution memory mapped display. If all bytes in the
RAM character generator are set to zero then the screen is blank. Set
one bit in one of the characters and a single high resolution dot will
appear on the screen. The relationship between a single dot on the
screen, the locations in the RAM character generator, and the code
value in each of the video memory locations is shown in Figurel7.
Showing that the basis of high resolution plotting is simply filling the
video RAM corresponding to the screen area of the high resolution
display with successive and incremented code values. The rest is a
matter of calculation to ensure that the correct bits are set in each of
the eight bytes corresponding to each of the character codes used in
the video RAM. A high resolution plotting program consists of two
parts, the initialisation and the point plot subroutine. The
initialisation sets up the registers of the 6561 for a user definable
character generator, lowers the top of memory to protect that
character generator, puts the correct data into the video and colour
RAMs and clears the contents of the RAM character generator. The
point plot subroutine is called whenever a point is to be plotted or
erased, and consists of a routine which calculates from given X and Y
co-ordinates which bit in which byte of the RAM character generator
is to be set or erased. It should be noted that the area of the screen
devoted to high resolution plotting can vary from just a few adjacent
character spaces to the whole screen (to do this the 6561 is initialised
to display 8x16 characters rather than the normal 8x8, this requires
the RAM character generator to be enlarged to 4K. An example of a set
of Basic routines to plot points in high resolution, plus lines and
circles, is contained in the following program (these routines use a 2K
character generator and 8x8 characters so the display occupies only
half the screen, the 6561 registers have been used to centre the
display).

127

ueaios ojuo paddew WvH O3pPIA

1

l

ssaippe }ejs
Jojeiauab i9joBIBYD

snid gx anjea

saul

(s
(3]

8pod ISV
fos Atoes
ws
43
43
3
ws
s 60083
8l 20068

l0jeioUsn) I9)0BIBYD

F—9L3tS

SL31S

— 003t$

suwnjo) zz

128

ig. 17 — Relationship between the character generator, video matrix,

and the displayed character.

Fi

FEM sdfdkitdbrint ek ianbiini ks
RFEM #FROGRAM TO PLOT THE GRAPH CGF A FUMCTION
REM #IH HIFH FE:DLUTIUH DH THE ”h

REM
REM % INITIALISE 6561 REGISTERS
FRINT " 20"

POKEZESET , 123

FHFEarEER &8
S fa e sat

Dk £ fr e g 0 0] e G P e

a1 PR s IO R R x W L R TR s B Ry

fo e L Ju G

i

erIR1Z

[Rx]

rgﬁ ®¥FLOT GRAFH OF FUHCTIOMN IN LIME 28
o i
:ﬁP C=aTolvs i
L=dg® 44n4’1u*iﬂ1nn
FEH A3
FEM ®#HIGH FESCOLUTIOM POIMT FLOT ROUTIHE
REM
A=5128
LRE=L - %
LA=IHT (LR
A=A+ LA¥178)
LRE=0LR~LA %2
CRE=CA5
CR=IMNTICR
A=A+ CCR¥2)
A=F+LF
CR=EIMTC(CR~CA %S0
FOKER. FEER(RMORF (CR

ot s

]

P

o

Pk e e 5 00 LT R0 0 O 10y £

Pl o %0 Jo D0 s s (50000 Fo]) den €52

[S—

Vil 48 s U3

U LT O O S T B T T

r‘.
Ll
i
2

129

S88 NEXTC
55@ FEM

51 REM #WAIT FOR KEY FPRESS THEM RETURM
552 REM #SCREEM TO NORMAL.
=53 REM
&80 GETAE: IFAR$F=""THEH:OH
186 FubEhh3t9 =248
o1 P SEE
igze
el rU}Eh DD, S8

FEM sdfppn e agrip i areinke g i ek

REM #FROGREAM TO FLOT HIGH RESOLUTION

REM #POINMTS. LINES AHD CIRCLES ON THE VIC.

EE% HEE SRR R AR
P

FEM ¥#IHITIALISE &5&1 AMD CHRRE GEH

FEM

POKE:e

PU}Eo

b el
iT. |T,

FDRG~UTU ”5

FOREVEE U+Q'.

FOKEZS48E+0, 2

HEXTE
FORR=5128TOS120+2505%5

41 POKEQR. &

42 NERTG

45 POKESESEE3, 253

45 POEEZSSEE, PEER (3636830R 128
47 POKEZEERY ., 158

28 REM

1 REM #DATA FOR LIME DRAMWIMG
2 REM #START AT COORDIMATES w1.Y1
3 REM #END AT COORDINATES k2. W2
4 REM

@3 READH1.Y1.K2.Y2

B D30 O3 G B e b 00 = 0 U e Gl e

DARN OIS Rl Rt

e

130

1835
118
128
158
151
152
153
154
1535
1536
157
158
153

(LR Ba¥ B

(X3

Rl e ol ol el el el aadh ol g
Lo WD LG
AR AR R I AR ORI S RO U R U R (Wl o

Joo Ul P e S5 L0 L0

ARSI R,

131

* DATA 28, 58, 96, 3

IFX1=255THEM260
GOSUBLBGE6
GOTO188

DATH &0, 16. 188,48
DATA &8, 18,68, 44
DATA 95.32,25,88
DATA &5,358.65.80
DATA &5,80,95,84
DATAR 25.86.85.88
IATA 2G,356.53. 68
DATA 85,640,508, 0
DATA 78.75.78.ed
DATA 75,753,735, 84
DATA 7&.75.,75.70
DATA 7@.68,75.608

2 DATA 7&.58.78,33
s DRTA 75,508,735, 33

DATA 7B.508.735.5
DATA 7T@.3%5.75.
DATA 25,568,835,

[R RN

IATA B5.56. 94,
DATA 85.35. 324,35
IATA 2@.5@,20.58
IATA 22,3022, 56
DATA 126,50, 128,58

TATA 122,908,122, 56

REM #END OF LINE DATA

IATA 255,255, 255, 255

REM

REM #DATA FOR DRAWING CIRCLES
REM ®CENTRE AT COORDIMATES Ci.CY¥
REM #RADIUS R

REM

DATA 255,255, 255, 255

Cx=21: CY=4@ R=10

GOSLIB6EE

Cx=121CY=35 R=1%

l_rl
GOSUBSHE6
A

KRR 8 R)

t LA

GETAF: IFA$=""THEMZ40

1800
iaie
1828
1628
1208
1218
1238
1248
1256
1278
1256
2o
1388
1318
1329
1338
1348
1358
1355
1268
137E
1388
1396
1418
i4z2a
1456
1478
1488
i 5 51
e
SE28
238
248
et 15
ZEss
2188
21ia
2iza
21oa

2148

REM

REM #LIHE DRAMING ROUTIHE

REM #USES DATA FROM LINE DATA THELE
REM

Wh=RE-nl

YD=r2-¥1

Aa=1:A1=1

IFYDI<BTHEHRB=-1
IFXD<CATHEMF1=-1
EE=HBS{ED?Z?E=HBSK?D}1D1=HE~¥E
IFD1»=aTHEM1 328
SP=—1:51=8:LG=YE:SH=KE
IFYD=aTHEHSE=1

GOTO1348

cP=8:51=-1 LG=HE SH=YE
IFED=ATHENS1=1

FEM
TT=LGiTS=SH?UB=LG*SH3CE=LG—5H#2
D=8

REM

C=i1:L=Y1:GOSUEZ168
IFCT=ATHEM1428

CT=CT+TS H1=Mi+51 1Y1=Y1+58
GOTO1468

CT=CT-UD: H1=K1+A1:Y1=Y1+R8
TT=TT-1

IFTT<ATHEHRETURHN

GOTOLE7E

REM

REM #FOINT PLOT ROUTINE

REM #USED BY LIME AND CIRCLE DR
REM #ROUTIMES

REM #C=3 COORDIMATE

REM #L=Y COORDINATE

REM

A=5126

LR=L-2

LA=INT{LED

A=A+ LA*LTE

LR={LRE-LAX*

132

=286
2318
2328
2325
2338
2486
2500
T)
%% %
Jea1
802
3663
3884
3965
3610
820
3836
3840
2856
2858
S8
Sagn
898
2186

133

CR=C/5

CA=INTICR>

=[+{CH&S

=R+ F

CR=INTCICR-CH %2

FOKER, FEEKCRYORF (TR

RETURHM

GETA$: IFAF=""THENZE0G

REM

REM #CIRCLE DRAWIMG ROUTINE
FEM #0x AND 0OY ARE OFFSET YRARIAEBLES
FEM #WHICH DETERMIME WHETHER A CIRCLE
REM #0R ELIPSE IS DRAMH

REM

{x=1:0%=1,2

H=2 %
H=188

IMC={R-83-"MH
FORI=ATORSTEFIHC
AERESTHOT) CE=TNT O SE0R+0K+, 435
Y=R¥COSCI Y Y=THTCYROY+0Y+ ., 4930
L=y C=X ' G0OSURZ 108
HEXTI
RETURHM

DISPLAY FORMAT CONTROL

The standard display format of the VIC is a video display with 22
characters horizontally and 23 lines vertically, with each character
consisting of a matrix of 8x8 dots. All these values, together with the
position of the text area in the screen, can be changed by altering the
contents of specific registers of the 6561. There are five screen format
variables which can be changed by the user, they are:

1 — Position of the first column of characters from the left hand
side of the screen. This can be changed by altering the contents of
control register No. 1., at location 36864, the normal value in this
register is 12. By increasing the value in the register by two the
position of the first column of characters is moved to the right by one
character space. The minimum value in 36864 is 0, this puts column 5
of the display area on the left hand edge of the screen, the maximum
value depends on the screen width and varies from 22 with a screen
width of 22 character to 64 with a screen width of 1 column.

2 — Position of first row of characters from the top of the screen.
This can be changed by altering the contents of control register No. 2.,
at location 36865, the normal value in this register is 38. By increasing
the value in the register by four the display area is moved down from
the top of the screen by one line. The minimum value in 36865 is 0 and
the maximum value 255, a value of greater than 130 will cause the
display to disappear off the bottom of the screen and can be used as a
means of screen blanking.

3 — Determine the number of rows in the display. The number of
rows displayed is determined by the value stored in bits 1 to 6 of
contro! register No. 4., located at 36867, the normal value in this
register is 174. The value stored in this register is obtained by
multiplying the desired number of rows by two and adding the result
to the value 128. The minimum number of rows is 1 (register value
130) and the maximum number of rows displayable is 32, — this is
only achievable if the screen width is reduced so as not to exceed the
506 bytes in the video RAMs (register value for 32 rows is 192).
Changing the number of rows in the display to other than 23 will
disrupt the operation of the screen editor.

4 — Determine the number of columns in the display. The number

of columns displayed is determined by the value stored in bits 1 to 6 of
control register No. 3., located at 36866, the normal contents is 150.

134

The value stored in this register is obtained by adding the minimum
number of columns desired to the value 128. The minimum number of
columns is 1 (register value 129), and the maximum number is 27
(register value 155) this is only achievable if the number of rows is
reduced so as not to exceed the 506 bytes in the video RAMs. Changing
the display width to a value other than 22 characters will disrupt the
operation of the screen editor.

5 — Determine the size of each individual character matrix. All
characters are normally displayed as a matrix of 8x8 dots on the
screen, but changing the value in bit 0 of register No. 4., location
36867, allows this to be changed to an 8x16 matrix. Add 1 to the
current contents of this register and the character size will be doubled
so that it is 16 dots high and 8 dots wide. Return to normal by
subtracting one. The larger size character matrix is required in high
resolution point plotting-in order to fill the whole screen with the 255
characters of the character generator memory.

135

VIDEO MEMORY ADDRESS CONTROL

Three areas of processor memory space are required by the 6561 in
addition to the memory locations occupied by the 6561 control
registers. These three memory areas are video RAM, colour RAM, and
character generator. Of these three the location of the video RAM and
the character generator are variable and under control of registers in
the 6561. The starting locations of these two blocks of memory are
stored in control register No. 6., location 36869, plus bit 7 of control
register No. 3., location 36866. Both addresses are stored in register
No. 6. as the most significant four bits of a 14 bit address, bit 7 of
control register No. 3., is address line 9 of the video RAM address.
Their use is best illustrated by the following sample:

Control register No. 3. 1T X X XX XXX
Control register No. 6. 00001101

14 bit video RAM address is:

CR No. 6 bits CR No. bit

76 547 X X X X X X X X
binary — 00 001X X X X X X X X X
hex — 0 2 0 0

14 bit character generator address is:

CR No. 6 bits
32 10
binary — 11 01 XX XXXX X X X X
hex — 3 4 0 0

In this example the video RAM is located at Hex $0200 and the
character generator at $3400. The starting position is incremented in
jumps of 1K for the character generator and 512 bytes for the video
RAM. The addressing range of both the character generator and the
video RAM are both limited since to access all the processor memory
space requires al6 bit address. This limitation is partly overcome by
using hardware addressing, thus the character generator start
address defaults to $8000 when the contents of all four address bits in
CR No. 6 which control this address are zero.

136

COLOUR CONTROL

The VIC has two modes of colour operation, ‘High resolution’ mode
and ‘Multicolour’ mode. The operating mode employed plus the
colours used are determined by the contents of control registers No.
15, and No. 16., of the colour video RAM. The colour video RAM is
located in a 506 byte block or memory starting at location $9600
{decimal 38400), if there is more than 8K of user memory then the
starting location of colour RAM moves down to $9400 (decimal
37888). The colour video RAM is only four bits wide, bits 0-2 are used
to select the character colour and bit 3 is used to determine if that
character is in ‘high resolution’ or ‘multicolour’ mode.

The 'High resolution’ mode is selected by having bit 3 of the video
colour RAM set to zero, this is the normal mode of operation. In this
mode there is a one to one correspondence between character
generator bits and the dots displayed on the screen. This means that
all ‘one’ bits will be displayed as dots of one colour and all ‘zero’ bits as
dots of another colour. Each character has two colours, a foreground
{all the ‘one’ bits) and a background colour (all the ‘zero’ bits). One of
these colours is determined by the first three bits of the video colour
RAM and the other by bits 4-7 of control register No. 16. in normal
operation the foreground colour is stored in the video colour RAM and
the background colour which is common to all characters displayed
on the screen is stored in register No. 16. This can be reversed so that
all characters have the same foreground colour which is determined
by register No. 16., and different background colours set by the
contents of the colour video RAM. Whether a common foreground or
a common background is selected depends on the contents of bit 3 of
control register No. 16. If bit 3 is set to 1 then the display will have
different coloured characters on a common background colour, if bit
3 = 0 then all characters will have the same colour against a different
colour background. In addition to the foreground and background
colours the 6561 allows the colour of the border around the display
area to be changed, this is selected by bits 0-2 of control register No.
16.

The colours which can be displayed on the VIC are divided into two
groups. The first group has eight colours, these colours can be used
for the foreground or video colour RAM stored colour, and the border.
The second group has sixteen colours which can be used for the back-
ground colour, (stored in control register No. 16.). and for the auxiliary
colour (this is only used in the ‘Multicolour’ mode). The colours
available in each of the the groups are as follows:

137

Auxiliary/Background Border/Character
Colours Colours
0 Black Black
1 White White
2 Red Red
3 Cyan Cyan
4 Magenta Magenta
5 Green Green
6 Blue Blue
7 VYellow Yeliow
8 Orange
9 Light Orange
10 Pink

11 Light Cyan

12 Light Magenta
13 Light Green
14 Light Blue

15 Light Yellow

in summary: in ‘High resolution’ mode the colours used for a
particular character are:

1 — Set bit 3 of register No. 16., for common background or
common foreground.

common foreground — POKE 36879, PEEK(36879)AND247

common background — POKE 36879, PEEK(36879)OR8

2 — Set the common background/foreground colour in bits 4-7 of
control register No. 16. There are sixteen possible colours, it is the
colour number as shown in the above table which is stored in the
register, as in the following example where variable C is the colour
and is set to a value between 0 and 15:

POKE 36879,PEEK(36879)AND15

POKE 36879, PEEK(36879)OR(C*1 6)

return to normal with — POKE 36879,27

3 — Set the border colour in bits 0-2 of control register No. 16.
There are 8 possible border colours and it is the colour number shown
in the above table which is stored in the register, as in the following
example where variable C is the colour and is set to a value between 0
and 7:

138

POKE 36879, PEEK(36879)AND248
POKE 36879,PEEK(36879)OR O

4 — Put the colour code for each character to be displayed into the
corresponding location in the colour video RAM. There are eight
possible character colours, see above table, they are stored in bits 0-2
of the 506 locations in the colour video RAM. This is done
automatically in a PRINT statement where the character colours can
be embedded in the string as colour commands. If POKE commands
are used to put characters into the video RAM then the colour code
must also be POKEd into the corresponding location in the colour
RAM. Given the column number — COL, and the line number — LIN, of
the display plus the ASCII code of the character — A, and the colour
code for that character — C, the following routine will put the
character and its colour into the correct locations in the two video
RAMs:

100 Q = LIN*22+COL

110 POKE 38400+Q,C

120 POKE 7680+Q,A

The ‘Multicolour’ mode is selected by having bit 3 of the video
colour RAM set to one. In this mode there is a two to one
correspondence between character generator bits and the dots
displayed on the screen. This means that two bits of the character
generator matrix for that character code correspond to one dot on the
screen, and the colour of that dot is determined by the two bit code in
the character generator. Unlike the ‘High resolution’ mode in which
only two colours can be displayed for each character, ‘Multicolour’
mode allows four colours per character. However, since two bits of
character generator data correspond to a single dot on the screen the
horizontal resolution is half that of the ‘high resolution’ mode. That is
each 8x8 character cell in memory maps onto an 8x4 character on
screen (8 lines of 4 dots). Each character occupies the same space in
either mode since both modes can be intermixed in a display,
meaning that a single dot in ‘Multicolour’ mode occupies the same
space as two horizontal dot positions in the ‘High resolution’ mode.
The amount of memory required for storage of the 8x4 ‘multicolour
characters is the same as that required for the 8x8 characters, the data
is simply mapped differently on screen.

The ‘Multicolour’ mode is not suitable for use with the ROM based
character generators but can be very effective when used with a user

139

definable RAM character generator. This is because the ROM
character generators are designed for ‘High resolution’ mode displays
where each bit in the character matrix represents a dot position on the
screen. In ‘Multicolour’ mode the character generator contains the
colour of each dot by using two bits to represent each display dot.
With a ROM character generator most characters will thus appear as
an array of different coloured points rather than a character. See the
section on ‘6561 Display Modes™ for information on the use of user
definable RAM character generators and high resolution point
plotting.

In ‘Multicolour’ mode the two bits of the character generator
character matrix which represent each screen dot select one of four
colours for that dot. The four codes created by these two bits tell the
6561 where to find the colour information for the dot. The two bit code
is not itself a colour code, it is simply a pointer to four different colour
codes, giving greater flexibility, as each code pointed to0 has either 3
or 4 bit resolution. The use of a simple two bit pointer, combined with
bit 3 of the -colour video RAM being used to determine the colour
display mode means that it is possible to freely intermix ‘High
resolution’ and ‘Multicolour’ characters in a display. The colour of the
dot can be either the background colour, the foreground colour, the
exterior border colour or a special auxiliary colour (information on
which is stored in bits 4-7 of control register No. 15.). The 'Multicolour’
mode select codes are:

00 — Background colour

01 — Exterior border colour

10 — Foreground colour

11 — Auxiliary colour

The use of the ‘Multicolour’ mode can be summarised using the
following example:

1 — Set the background colour to one of 16 colours, this colour
code is stored in the following example in variable C which will have a
value between 0 and 15:

POKE 36879,PEEK(36879)AND15

POKE 36879,PEEK(36879)OR(C*16)

2 — Set the exterior border colour to one of 8 colours, this colour

code will have a value between 0 and 7 and in the following example is
stored in variable C:

140

POKE 36879,PEEK(36879)AND248
POKE 36879, PEEK(36873)ORC

3 — Set the foreground colour to one of 8 zolours by POKEing the
colour code into the colour video RAM location, corresponding to the
location of the displayed ‘Multicolour’ character. Since it is bit 3 of the
colour video RAM which determines whether a character is displayed
in ‘High Resolution or Multicolour mode then 8 should be added
to the colour code values for all characters to be displayed in
‘Multicolour mode.

4 — Set the auxiliary colour code to one of 16 colours, this colour
code will have a value between 0 and 15 and in the following example
is stored in variable C:

POKE 36878,PEEK(36878)AND 15

POKE 36878,PEEK(36878)OR(C*16)

NOTE: Bit 3 of control register No. 16 has no function in "Multicolour
mode but should be set to the normal value of 1, unless otherwise
required when intermixing both colour display modes.

5 — Set up the character generator matrix for each character to be
displayed, thus:

- kN
I bit e %

byte 76 54 32 10 Hex Location
0 00 01 10 11 1B 5120, % w
1 0001 10 11 1B 5121 1 "%
2 0001 10 11 1B 5122 . -
3 00 01 10 11 1B 5123, -
4 00 00 00 00 00 5124, >
5 01 01 01 01 55 5125, -
6 17010 1010 AA 5126. 1.
7 171 11 11 11 FF 5127, -

This example is for a character in a user definable character generator
starting at location 5120, the character has a code value of 0 and
shows each of the four colours available in multicolour mode
characters thus:

141

]

NONMBWN—=OF

Hex
1B
1B
1B
1B
00
55

FF

Location
5120
5121
5122
5123
5124
5125
5126
5127

142

Sound Locations

The sound locations must be POKEd with numbers between 128
and 255. The frequency rises as the number, with the exception of 255
which is a low frequency. Each tone location produces one voice. A 0
in any byte will turn that voice off. The following decimal codes
produce an approximation of three octaves of the even-tempered
musical scale. The scale is relative, not absolute concert pitch. This
table lists the musical note and its respective POKE location.

Poke locations of Musical Notes

Musical Note Poke
C 128 E 230
c# 134 F 231
D 141 F# 232
D¥ 147 G 234
E 163 G# 235
F 1569 A 236
F# 164 A¥# 237
G 170 B 238
G# 174 C 239
A 179 C# 240
A# 183
B 187
C 191
c# 195
D 198
D# 201
E . 204
F 207
F# 210
G 213
G# 215
A 217
A# 219
B 221
C 223
c# 225
D 227
D# 228

143

THE 6561 SOUND GENERATORS

The sound effect or music generation capabilities of the VIC are
controlled by five registers in the 6561. Four of the registers are
associated with sound generation, the fifth controls the volume of the
sound output. Each of the four sound generation registers has an
associated oscillator, the register contents determine the frequency
of the oscillator output. The frequency is determined by varying the
pulse width, the output from all four oscillators is a symmetrical
square wave. The outputs are combined to give the audio input to the
TV display, where the sound is generated via the TV speaker. One of
the four audio oscillators acts as a variable frequency noise source
and the other three generate a simple tone. The five control registers
used are:

Audio oscillator No. 1. — control register No. 11., location 36874.
Bits 0-6 control the frequency, bit 7 turns the oscillator on (=1) or off
(=0). Low base frequency, thus = value of 128 put in this register will
produce the lowest frequency sound of any of the three audio
oscillators.

Audio oscillator No. 2. — control register No. 12., location 36875.
Bits 0-6 control the frequency, bit 7 turns the oscillator on (=1) or off
(=0). The base frequency for this oscillator is between that for audio
oscillators No. 1., and No. 3.

Audio oscillator No. 3. — control register No. 13., location 36876.
Bits 0-6 control the frequency, bit 7 turns the oscillator on (=1) or off
(=0). This has the highest base frequency of the three oscillators.

Noise generator — control register No. 14, location 36877. Bits 0-6
control the base frequency of the noise generator, bit 7 turns it on
(=1) or off (=0). This is a pseudo white noise generator, giving a
random sequence of pulses with a frequency determined by the
contents of the control register.

Volume control — control register No. 15, location 36878. The
volume of the composite audio signal produced when one or more of
the four audio oscillators is turned on is controlled by bits 0-3.

Each of the audio oscillators is capable of generating 128 different
frequencies and each oscillator is different, thus oscillator No. 1., can

144

be described as a ‘base’ sound generator, No. 2., as a ‘Tenor’ and No.
3., as a ‘soprano’. The combined audio output has one of sixteen
volume levels.

The four sound generators can be used to create a wide range of
sound effects for use in games programs, they can also be used to play
music. Writing routines to create sound effects is simply a matter of
experimentation. Try to analyse the required sound and then re-create
it using a combination of the four audio oscillators and the volume
control, this is demonstrated in some of the following examples:

2EM #MAKES A SOUMD LIKE THE SIHGING
EEM ®0F BIRDS
FE!}

[y]
Ik
CZ
(73]
i:l:_,

0
J

I_I
—
R

rdFL ITﬂ“ﬁ
ECRM=S4 TOS4E+IMTCRNDC L 2 ¥ 180 8TEP-1
FOKESSETE. M

HE=TH

1 FOEEZSETE . &

TE FORM=ATOINTCRHDC L »#1080+128

a0 MEXTH

i HE=TL

168 GOTO1S

W .,
T R

WFy 00T ga 03 o0 e O U0

0% T

FEM¥MAKES A SOUMD LIKE THE RINGIMG OF
REM#A TELEFHONE
mEM

18 POKE3EETE. 13
28 FORL=1TOS

15 FuFm~1TU_-
48 POKEISETE, 234
5@ FORM=1TOS

Z8 HEX TH

St E“TH

i5) C‘qu TOZ00E
1ag HE”TH

1180 MEST

128 FPOKEZSEVE. B

B
o

1 REM #*MARKES A SOUMD LIKE A GALLOPING
= REM #HORSE. THE SOUND RECEDES INTO THE
3 REM #DISTAMCE.

4 REM

5 FORHE=1STOGSTEF-1

& FORZS=1Tid

7 A=&8

18 POKEZRETE. &

o8 POKESRSTE, 238

29 POKEISEETE. 8

48 FUFD—ITZR HESTE

=@ POKEZSETE, 228

SR POKERESTE. 8

FE FORG=1TOA HEXTR

118 PORKEZSS7E, INTOHAZ2
128 POKEZRETE, 228

126 FPOKEZESETE. 8

148 FORG=1TOR:HESTR
158 POKEZ&37TE, 230

168 POKEZ&ETE. 8

178 FORG=1TO4%A HEXTH
1868 HEATZ

1538 HERTH

1 REM #MAKES A SOUND LIKE THE

& REM #A GRANDFATHER CLOCE
b

1 210

& £ 2

a8 T

4a FHFﬂ”lTEH HESTE

=8 FOKEISSTE, 2356

&8 FOKEZRETE. O

T8 FORG=1TOR HEXTE

a8 GOTOZo

TICKIMG OF

146

FEM #MAKES A SOUND LIKE THE ERERKING
REM #0OF WAVES OM A SERASHORE
FEM
FOKEZ&EETT, 108
FORL=1TO18
O=THTCRHDCL D¥S*5E0+38
FORM=3TOL5
FOKEZSEYEM
FORM=1TOD
HESRTH
HE®TH
FORM=1STOZSTER-1
POEEZEETE.M
FORN=1TOD
MEXTH
HEXTHM
HERTL
FOEEZBE7YE. 8
FOKEZEETT . 8
GOTOL1E

Do R v

X

71 =g 0y LR A 0 o3 es =y LR

Y ok ke pede P ped ek et BT UL
[s I R X I R wx]

it o R A R R

Ty U0 e Dl
0 % 02 T

It

Using the audio generators on the 6561 to play music requires some.
thought otherwise the result will sound very abrasive and not very
satisfactory. The first problem is that the square wave output from
the audio oscillators produces a rather unpleasant set of harmonics
which gives the note a rough sound. Only external electronics can
change the shape of the waveform, but by using two audio oscillators
to produce the same note of frequencies about an octave apart a
more pleasing sound is produced. The second problem is to generate
the correct attack and decay for the instrument, this is done by
changing the amplitude of the output during the generation of each
note. These two ideas are illustrated in the following program which
plays scales, the sound resembles a piano.

147

REM #FLAYS A REPEATING OCTAYE SCALE

REM ¥THE SOUND OF ERCH MOTE DECAYS AHT
SEM ¥THUS SOUHDS MORE LIKE A FIAMO THRH
REM #AM ELECTRIC ORGAN

READA: IFA=18ETHEM1 36

FOKEZBEVY.H

WX
s,

I g G0 Pl e DT e 0 00 e

i POKEZ&EFS.H

A FORR=1STOBSTER-1

8 PORKEZSETE.E

SE FORE=1TOSE8 :HEXTS

aE HESTER

188 GOTOS

15@ RESTORE :GOTOS

285 EHTHZEBJEE?JESB,231,234,236,2385239

21a DHTHESB,ESS,EESJ234,231,23@,22F;223J1EB

To play a musical score requires a note table, this table contains
each note in the score in the form of the value to be placed into the
audio oscillator register and the duration of that note.

148

152 — Vic |/0 Ports and the 6522
160 — Operation of |/0 Ports

164 — Interval Timers and Counters
of the 6622

173 — Shift Register of 6522
177 — Interrupts
181 — Function Control

4 THE 6522 VIA AND THE USER PORT

150

SH31SIDAY

I0¥LNOD
$§330V

dIHD

¢ €Sy

¢ 7Sy

¢ ~1SY

¢ nsy

. 8?2

—— 153

j——— %10

e m/y

sy344n8
sne

viva

sna

viva

8 1¥od T wawiL
'
BI0 viva L HOIH ¥ILNNOD
9 1804 N gune
Sy343n8 inaino MO1 WOV
Ho1YY
1ndN
[SRYETTEY
T80 ”
93y 1dHS mo1 ! HOIH ¥ILNNOD
180 '
MO7 VHOIH WLV
1
1081NOD
INVHSONVH
0¥LNOD
8 twod NOILONAZ
zvd
Vo4 v tuod AgvVINXNY
po—
ALTELTER
Su315193
v 1H0d
410 viva
—
v 1u0d sy343n8 1n41N0 31883
HOLVT
Anani sov4
10¥INOD
LNy ILNI

our <

Fig. 18 — Block diagram of the 6522 Versatile Interface Adapter chip.

151

THE VIC I/0 PORTS AND THE 6522.

The VIC communicates with the user, and with peripheral devices,
via three integrated circuits. The most important of the three is the
6561 VIC chip, looked at in detail in the previous section. The chip
controls the video display, sound generation plus the peripheral
devices, a light pen and a joystick. The other two integrated circuits
are 6522 Versatile Interface Adapters or VIAs and these are used 1o
perform all other /O functions of the VIC. We can summarise the
function of these two chips as follows:

Keyboard input

User port

Cassette deck

Serial 1/0 — cut down |[EEE 488 port

RS232 1/O — for printers modems etc.

Restore key (NM line)

Joystick — simple switch type

Light pen control

IRQ timing for real time clock and keyboard
The two VIA chips which are used to control all these functions have
between them just 32 programmable 1/0 lines and eight handshake
lines. Many of these lines are used by more than one of the above
functions.

An understanding of the two 65622 VIA interface chips is essential if
all the features of the VIC are to be used to the full, and a knowledge of
these chips helps to explain some of the quirks of the system. The
functioning of these chips is controlled by internal programmable
registers, there are sixteen registers in each chip. These 32 registers
(sixteen from each chip) are located in addressable memory space and
are located at hex $3110 - $912F (decimal 37136 to 37168). They can
thus be accessed from Basic using PEEK and POKE statements and
from machine code using LDA and STA commands.

Of the 40 1/O lines output from the two VIA chips, the user can
directly connect equipment to, and control the functioning of, 23
lines, the other 17 lines are used by the keyboard and are not therefore
usable. All but one of the /O lines on VIA No. 1.. can be used, but only
five of the lines on VIA No. 2., VIA No. 1, is thus used in all the
examples in this section. The functions of each 1/0O line from the two
VIA chips is shown in Figure19, the electrical connections which allow
the user to utilise some of these lines is shown in Figures 20 to 24

152

1563

Via & 1

NMI
cal RESTORE
PAQ SERIAL CLK (IN)
PAI SERIAL DATA (IN}
PA2 Y0
PA3 JOY 1
PA4 Joy 2
PAS LIGHT PEN
PAS CASSETTE SWITCH
PAT7 SERIAL ATN (OUT)
CA2 CASSETTE MOTOR
cB1 \
PBO
PB1
PB2 USER
P83 PORT
PB4
PBS
PB6
PB7
CB2 /
83110
}
SAIF

VIA 82

IRQ

CAl

PAD
PA1
PA2
PA3
PA4
PAS
PAG
PA7

CA2

cB1

PBO
P81
P82
PB3
PB4
PB5
PB6
PB7

cB2

$9120

$912F

CASSETTE READ

ROW
INPUT

SERIAL CLK (OUT)

SERIAL SRQ (IN)

COLUMN
OUTPUT

Joy3

SERIAL DATA (0UT)

Fig. 19 — Allocation of the I/ O lines from the two 6522 chips.

Though these lines are all assigned particular functions the user is not
confined to using a particular 1/0 line for the function designated for
that line. This is because all the 1/0 lines are under software control,
and it is not until the routines, within the operating system which
utilise that line, are called for a particular function, that that line is
used. This flexability allows the re-definition of 1/0 line function and is
one of the most useful features of the VIC.

A block diagram of the 6522 is shown in Figure 18, a very complex
chip, with sixteen different addressable registers. Each bit within
these registers has a specific function, either as an input, an output or
to control the operation of the 6522. A memory map of the
addressable registers of the two chips is shown in Figure 8, the
registers are of six basic types; |/O data direction, peripheral control,
shift register, timers and timer control registers.

The diagram in Figure18 can be divided into two, on the left are the
connections to the processor, the processor interface. On the right the
outputs of the 6522, or the peripheral interface. The main components
of the processor interface are the eight bi-directional data lines. These
are connected directly to the processor data bus and are used to
transfer data between the VIA and the processor. As with any
memory, the processor treats the 6522 as a sixteen byte block of
memory, the direction of data transfer is controlled by the R/W line,
the exact timing of a transfer being controlled by the $2 clock line. The
individual registers are addressed by the register select lines
connected to the bottom address lines AO — A3. The exact location of
the 6522 within memory space is determined by de-coding some of
the address lines and connecting these to the chip select inputs. The
registers of the 6522 will only be accessed if chip select CS1 is high and
CS2 low. As with all the I/0 chips the 6522 can generate a processor
interrupt by pulling the IRQ line low. This occurs whenever an internal
interrupt flag is set as a result of an input on one of the peripheral
control lines.

The processor interface lines have seven basic functions which can be
summarised as follows:

1 — Phase Two Clock ($p2) — data transfers between the 6522 and
the processor take place only when the ¢2 clock is high. This clock also
acts as a time base for the internal 6522 timers and shift register. On
the VIC the ¢2 clock is derived from the 6561 video interface chip and
has a frequency of MHz 1.1082.

154

/

1

1) Game /0 4) Serial 110
2) Memory Expansion 5) Cassette

3) Audio and Video 6) User Port

Fig. 20 — Position of the different VIC I/0 outputs.

USER /O

1 2 3 456 7 8 9 101112
— i E A EnESENEEREN

W
A BCDETFHUJIKLMN

PIN #] TYPE NOTE PIN # | TYPE | NOTE
1 | GND A | GND
2 | +5Vv 100mA MAX.| B CB1
3 | RESET o] PBO
4 | JOYO D PB1
5 | JOYt E PB2
6 | JOY2 F PB3
7 | LIGHT PEN H PB4
8 | CASSETTE SWITCH J PB5
9 | SERIAL ATN IN K PB6

10 + 9V 100mA MAX, L PB7
11 | GND M cB2
12 | GND N GND

Fig. 21 — The allocation and function of pins on the User Port connector.
155

2 — Chips Select Lines (CS1, CS2) — the two chip select inputs are
connected to the processor address bus. CS1 is connected directly to
a low address line, in VIA No. 1., to A4 and in VIA No. 2., to A5. CS2 is
connected in both VIA chips to a decoded address derived from
address lines A10 to A156. CS2 determines the starting address as
$9100, and CS1 is the offset so that VIA No. 1., starts at address $3110
and VIA No. 2., at $9120. Note that the 6622 registers can only be
addressed when CS1 is high and CS2 is low.

3 — Register Select Lines (RSO, RS1, RS2, RS3) — the four register
select lines are connected to the processor address bus lines A0 — A3.
This allows the register to select one of the sixteen registers in the
6522.

4 — Read/Write Line (R/W) — the direction of data transfer
between the 6522 and the processor is controlled by the R/W line. If
R/W is high then a ‘read’ operation is performed and data is transferred
from the 6522 onto the data bus. If R/W is low then a ‘write’ operation
is performed and data currently on the data bus is loaded into the
addressed register of the 65622.

§ — Data Bus (DBO to DB7) — data is transferred between the
processor and the 6522 via the eight bi-directional lines of the data
bus. The internal data bus of the 6522 will only be connected to the
processor data bus when the two chip select lines are enabled and the
¢2 clock is high. The direction of data transfer will depend on the state
of the R/W line and the register addressed on lines RSO to RS3.

6 — Reset (RES) — the reset line clears all the internal registers of
the 6522 (except the timers and shift register) and sets them all at
logic zero. Resulting in all the interface lines put in the input state, and
timers shift registers and interrupts are all disabled. This is connected
to the processor power up circuitry and is only used when the system
is switched on (this line is accessable externally and since the system
software can be changed its function could be modified).

7 — Interrupt Request (IRQ) — the interrupt request output from
the 6522 is very important in the VIC. The IRQ line goes low whenever
an internal interrupt flag is set and the corresponding interrupt flag is
high. On VIA No. 1., the IRQ line is connected to the processor NMI
interrupt line, this is used to test the RESTORE key which is connected
to the CA1 line of the VIA, an IRQ signal is produced if this line is

156

SERIAL /O

PIN # TYPE

SERIAL SRQ IN

GND

SERIAL ATN IN/OUT
SERIAL CLK IN/JOUT
SERIAL DATA IN/OUT
NC

DO e W =

Fig. 22 — The allocation and function of pins on the Serial I/0 connector.

AUDIO/VIDEO

TYPE NOTE
+6V 10mA MAX
GND

AUDIO
VIDEO LOW
VIDEO HIGH

PIN #

imamm-t

Fig. 23 — The allocation and function of pins on the Audio/Video connector.

GAME I/O

PIN# | TYPE NOTE

JOYJ

JOY1

Joyz2
JOY3
POTY
LIGHT PEN
+5V MAX. 1GmA
GND
POT X

O oONOO & W

Fig. 24 — The allocation and function of pins on the Game 1/0 connector.

157

brought low (key depressed). On VIA No. 2., the IRQ line is connected
to the processor IRQ line, the function of this line is to generate a
regular 60 Hz interrupt which is used by the clock, 1/0 and keyboard
routines, this interrupt is provided by Timer 1 in the VIA.

The peripheral interface lines are divided into two /O ports, each
port having eight bi-directional I/0 lines and two control lines. The
function of each of the four ports on the VIC are shown in Figure 3. The
following is a brief discription of the 1/0 buses and control lines of a
6522:

1 — Peripheral A Port (PAC — PA7) — this port consists of eight
bi-directional lines each of which can be independently programmed
under control of the Data Direction Register to act as either an input or
an output. The polarity of the lines defined as outputs is controlled by
the contents of the Output Register. Data input on those lines defined
as inputs can be latched into an internal register under control of the
CA1 line. The internal control registers are used by the processor to
control the modes of operation of the 6522. All lines represent. a load
of one standard TTL gate in the input mode and will drive one
standard TTL load in the output mode.

2 — Peripheral A Control Lines (CA1, CA2) — the two peripheral
control lines act as interrupt inputs (as in the RESTORE key) or as
handshake outputs (as in serial clock output). Each line controls an
internal interrupt flag with a corresponding interrupt enable bit. In
addition CA1 controls the latching of data on peripheral port A input
lines. The various modes of operation are control registers of the
6522. CA1 is a high impedence input only while CA2 is either an input
or an output. In the input mode CA2 will source one standard TTL load
and in the output mode will drive one standard TTL load.

3 — Peripheral B Port (PBO — PB7) — this port consists of eight
bi-directional lines each of which can be independently programmed
under control of a Data Direction Register to act as either an input or
an output. The operation and electrical characteristics of Port B is the
same as Port A. In addition when line PB7 is in the output mode it's
polarity can be controlled by one of the internal timers. The second
timer can be used to count pulses on line PB6 when that line is in the
input mode.

4 — Peripheral B Control Lines (CB1, CB2) — these two peripheral
control lines have the same functions and electrical characteristics as

168

control lines CA1 and CA2. They also have the additional function of
acting as a serial port under control of the internal shift register of the

6522.

159

OPERATION OF THE 1/O PORTS

Three registers are required to access each of the eight line
peripheral ports, they are a Data Direction register, an Output register
and an Input register. Each port has a Data Direction register for
specifying whether each of the eight lines acts as either an input or an
output. A zero in bit of the Data Direction register causes the
corresponding peripheral line to act as an input. A one causes the line
to act as an output.

Example: Set lines O to 3 as inputs and 4 to 7 as outputs on Port B of
VIANo. 1.

I/0 line data DDR contents DDR contents
number direction if line = in for example

0 in 1 0

1 in ‘ 2 0

2 in 4 0

3 in 8 0

4 out 16 16

5 out 32 32

6 ou 64 64

7 out 128 128

Total for example — 240

Command is — POKE 37138,240

Each peripheral line is connected to an Input register and an Output
register. When a line is programmed to act as an output the voltage on
that line is controlled by the corresponding bit in the Output register.
A ‘1" in the Output register causes the corresponding line to go ‘high’,

and a ‘0’ causes it to go'low’.

Example: output to port B of VIA No. 1., using the data direction set
out in the previous example, lines 4 and 7 are high and lines 5 and 6 are

low.
1/0 line data direction ‘high’ or value of line

number of.line ‘low’ inl/Oreg

in —

prWN=O
=)
I
I

160

5 out ‘low’ 0
6 out ‘low' 0
7 out ‘high’ 128

Total for example — 144

Command is — POKE 37136,144

Reading one of the peripheral port registers causes the contents of
the Input register to be transferred onto the data bus. With input
latching disabled the contents of the Input registers will always
reflect the data currently on all the peripheral port lines.

Examples: read the contents of the input lines of port B of VIA No.1.,
set up in the example on data direction, store the contents as variable
A.

A = PEEK (37136) AND 15

the AND 15 masks off the lines used as outputs, they must be
removed since the current state of the output lines is stored in the
input register. AND commands can then be used to determine which
lines are ‘high’ and which are ‘low’; thus to determine the state of line
use:

10X = AAND 2: REM line 2 = AND 4, line3 = AND 8 etc

20 IF X =0THEN 40

30 PRINT “Line 1 is ‘high” :END

40 PRINT “Line 1 is 'low" :END

If input latching is enabled then input register A will reflect the
contents of all the lines on Port A prior to the setting of the CA1
interrupt flag by an active transition on CA1.

There is a slight difference in the operating of Port A and Port B.
Both operate in the same manner, however, for the output lines of
Port B the corresponding bits in the Input register will contain the
contents of the corresponding output -register bit instead of the data
on that line. This allows proper data to be read into the processor if
the output line is not allowed to go to the full voltage. Thus if an
output line is tied to ground or zero voltage then that line will always
be at a logic zero irrespective of the contents of the corresponding
Output register bit. In Port A this bit will always be ‘0" in the Input

161

register but in Port B it will contain the contents of the corresponding
bit in the Output register. With input latching enabled on Port B,
setting the CB1 interrupt enable flag will cause the Input register to
latch this combination of input data and Output register data until the
interrupt flag is cleared.

Registers Used in Operation of the |/O Ports.

Register 1 — Parallel port B 1/0 register
VIA No. 1 — Hex $9110 decimal 37136
VIA No. 2 — Hex $9120 decimal 37152

This register contains the contents of the input and output lines of
port B of the 6522, Reading
CB2 interrupt flag to be reset.

Register 2 — Parallel port B 1/0 register with handshake control.
VIA No. 1 — Hex $9111 decimal 371 37
VIA No. 2 — Hex $9121 decimal 37163

This is one of two registers which contain the contents of the input
and output lines of port A. The two registers are identical except that
this register has control over the handshake lines. Data input using
the CA1 line to latch the input into the 1/0 register will set the CA1
interrupt flag. This flag is cleared by reading the contents of register
No. 2.

Register 3 — Data direction register for port B
VIANo. 1 — Hex $9112 decimal 37138
VIA No. 2 — Hex $9122 decimal 37154

This register controls each of the eight lines on Port B and
determines whether they are acting as inputs or outputs. A ‘one’ in
any of the eight bits of this register sets the corresponding line into
the output mode, and a ‘zero' puts it into the input mode.

Register 4 — Data direction register for port A
VIA No. 1 — Hex $9113 decimal
VIA No. 2 — Hex $9123 decimal 37155

This register controls each of the eight lines on port A and
determines whether they are acting as inputs or as outputs. A one in

162

any of the eight bits of this register sets the corresponding line into
the output mode and a zero puts it into the input mode.

Register 16 — Parallel port A 1/O register
VIANo. 1 —Hex $911F decimal 37151
VIA No. 2 —Hex $912F decimal 37167

This is the second of the two registers containing the contents of
the input and output lines or port A. This register has no control over
the handshaking lines. The direction of the data transfer in this port is
controlled as in the other port A register by the contents of Data
direction register A.

163

THE INTERVAL TIMERS AND COUNTERS OF THE 6522

The 6522 has two internal timers, one of which can also function as
a counter of pulses input on one of the /O lines. These timers are not
only useful but of vital importance to the operation of the VIC. It is
these timers which are used to control the generation of the 60 Hz
interrupt used to update the real time clock and scan the keyboard.
They are also used to control the timing of 1/0O on the serial port, the
RS232 port and the cassette. Since the VIC interface uses two 6522
chips there are a total of four timers available for use by the system
software. The timers are used in conjunction with the processor
interrupts, the following table shows some of the functions of each
timer plus the interrupt line affected:

VIANo. 1 NMI interrupt

Timer 1 — RS232 port /0O timing
user port operation

Timer 2 — RS232 port /0O timing
user port operation

VIANo. 2 IRQ interrupt

Timer 1 — System 60 Hz interrupt
real time clock updating
keyboard scanning

Cassette read/write timing

Timer 2 — Cassette read/write timing
Serial port timing

Note that Timer 1 of VIA No. 2., is used for both updating the real time
clock and cassette timing, for this reason the real time clock looses
whenever the cassette is used.

Interval Timer 1 consists of two eight bit latches and a sixteen bit
counter, these occupy four of the 6522 registers, registers number 5 to
18. Their location in the VIC are as follows:

Register 5— Timer 1 counter low order byte

VIA No. 1 —Hex $9114 decimal
VIA No. 2 — Hex $9124 decimal

164

Register 6 — Timer 1 counter high order byte
VIANo. 1 —Hex $9115 decimal 37141
VIA No. 2 —Hex $9125 decimal 37157

Register 7— Timer 1 latch low order byte
VIA No. 1 —Hex $9116 decimal 37142
VIA No. 2 — Hex $9126 decimal 37158

Register 8 — Timer 1 latch high order byte
VIA No. 1— Hex $9117 decimal 37143
VIA No. 2 — Hex £9127 decimal 37159

The latches are used to store data to be loaded into the counter.
After loading, the counter decrements at the system clock rate (MHz
1.1082). Thus if the counter is loaded with its maximum value (all
sixteen bits = or decimal 65,535) it will be decremented to zero in
0591 seconds. Upon reaching zero, an interrupt flag is set and one of
the two interrupt lines will go low and generate a processor interrupt.
The timer will then disable any further interrupts, or automatically
transfer the contents of the latches into the counter and continue to
decrement. In addition the timer can be instructed to invert the output
level on one of the peripheral 1/0O lines each time it ‘times out’. The
modes of operation are controlled by reading or writing to the four
timer registers, plus the auxiliary control register and the two
interrupt registers.

The processor can only load data directly into three of the four
registers of Timer 1, these registers are the high order and low order,
latch registers and the high order counter register. The low order
counter register can only be loaded by an automatic process, which
takes the contents of the low order latch and stores it in the low order
counter register when the processor writes t0 the high order counter
register. The following commands would have these effects on Timer
1 of VIANo. 1:

POKE 37140, 255 :put 255 into the low order latch.

POKE 37141,255 :put 255 into the high order latch.

then transfer to high order counter then transfer
low order latch into low order counter,
and reset the Timer 1 interrupt flag.
POKE 37142, 255 :put 255 into the order latch
POKE 37143, 255 :put 255 into the high order latch and reset
the Timer 1 interrupt flag

165

Al four Timer 1 registers can be read using PEEK or similar
commands, reading each of these registers of VIA No.1., has the
following effects:
A = PEEK(37140) :read contents of low order and reset Timer
1 interrupt flag.
A = PEEK(37141) :read contents of high order counter
A = PEEK(37142) ;read contents of low order latch

A = PEEK(37143) :read contents of high order latch

The four operating modes of Timer 1 are controlled by two bits in
the Auxiliary Control Register. This register is register No. 12., of the
6522 and is located at address $9118 {decimal 37147) for VIA No. 1.,
and $912b (decimal 37163) for VIA No. 2. Bits 6 and 7 of the Auxiliary
Control register (for ACR) are used to control the operating modes of
Timer 1, these four modes can be divided into two groups each of two
modes, the one shot modes and the free running modes. The Auxiliary
Control Register is also used to control the output by Timer 1 of pulses
on peripheral 1/0 line PB7 of the VIA. However, to output pulses on
PB7 requires that the Data Direction Register for Port B line 7 is set t0
‘1" so0 that this line is in the output mode. Setting bit 7 of the ACR will
then ensure that peripheral line PB7 is under control of Timer 1. Line
PR7 is set into the output mode by the following command.

POKE 37138, PEEK (37138) AND 127 OR 128

Bits 6 and 7 of the ACR are used to control the operating modes as
follows:

ACR bit 6— ‘0" = enable one shot mode
1" = enable free-running mode

ACR bit 7 — ‘0" = disable output on PB7 A
‘1" = enable output on PB7

The four operating modes formed by combinations of these two
bits can be obtained by using PEEK and POKE commands plus logical
operators, thus for VIANo. 1., the modes and commands are:

ACR6 = "0 ACR7 =0’

Mode function — Generate a single time-out interrupt on (NMB
each time Timer 1 is loaded. Output of PB7 by Timer 1 is disabled.

166

POKE 37147, PEEK(37147) AND 63
ACR6="0' ACR7 ="1"

Mode function — Generate continuous interrupts, the spacing
between interrupts being determined by the contents of Timer 1.
Output on PB7 by Timer 1 is disabled.

POKE 37147, PEEK(37147) AND 63 OR 64
ACR6 = ‘1 ACR7 =0’

Mode function — Generate a single interrupt and an output pulse
on PB7 for each Timer 1 load operation. Note: ensure that the Data
Direction Register is set to allow PB7 to function as an output before
using this mode.

POKE 37147, PEEK(37147) AND 63 OR 128
ACR6 =1’ ACR7 ="1"

Mode function — Generate continuous interrupts and pulses on
PB7, the spacing between interrupts and pulses being determined by
the contents of Timer 1. Note: ensure that the Data Direction Register
is set to allow PB7 to function as an output before using this mode.

POKE 37147, PEEK(37147) AND 63 OR 192

The one-shot mode allows the generation of a single interrupt for
each timer load operation. The sequence of events is that the timer is
loaded with a value, the counter then decrements this value, when
zero is reached an interrupt is generated. The delay between the write
operation and the generation of the interrupt is thus directly
proportional to the data loaded into the counter. If the operating
mode and Data Direction Register contents allow the generation of a
pulse on peripheral line PB7 then the pulse width is also dependent on
the value loaded into the counter. To use the timer in the one-shot
mode the following sequence of operations are performed:

1 — Set bits 6 and 7 of the Auxiliary Control Register to give the
correct operating mode — one-shot with output on PB7 and without
output on PB7. If a pulse is to be output on PB7 ensure that the Data
Direction Register is correctly set to define PB7 as an output.

167

2 — Load the low order latch (location $9116 of VIA No. 1) with low
order part of value to be loaded into the counter.

3 — Load the high order counter (location $9115 of VIA NO. 1) with
the high order part of the timing value.

Operation number 3 initiates the following events:

1 — The contents of the low order latch are transferred into the low
order counter

2 — |f the PB7 output is enabled then this line will be pulled low on
the phase two clock pulse following the write to high order counter.

3 — The contents of the counter is decremented at the ¢2 system
clock rate.

4 — When the counter reaches zero the Timer 1 interrupt flag is set
and a system interrupt generated (assuming the interrupt is enabled),
if the output on PB7 is enabled then that line will go high.

5 — The counter will roll over and continue decrementing from a
value of decimal 65,5635. This allows the system processor to read the
counter contents and determine the time since the interrupt. The
Timer 1 interrupt flag will not be reset until it has been cleared by a
read of low order counter or a write to high order latch).

Note: when using the timers, the count value loaded into the timer
must be two counts less than the desired interval time, this is due to
the 1 1/2 cycle overhead on interval timing.

The free-running mode allows the generation of a continuous series
of evenly spaced interrupts. If the operation mode and Data Direction
Register contents allow the generation of an output on peripheral line
PB7 then a continuous series of pulses are also produced on this line.
The time between each interrupt or output pulse is dependent on the
contents of the Timer 1 latch bytes. To use the timer in the free-
running mode the following sequence of operations are performed:

1 — Set bits 6 and 7 of the Auxiliary Control Register to give the

correct operating mode — free-running with output on PB7 and
without output on PB7. If pulses are to be output on PB7 ensure that

168

the Data Direction Register is correctly set to define PB7 as an output.

2 — Load the low order latch (location $9116 of VIA No. 1) with the
least significant byte of the counter delay value).

3 - Load the high order latch (location $9115 of VIA No. 1) with the
most significant part of the counter delay value.

This will initiate the following sequence of events:

1 — The counter of Timer 1 will be loaded with the contents of the
two latch registers.

2 — The counter will start decrementing at the $2 system clock
rate.

3 — When the counter reaches zero the interrupt flag will be set
and if Timer 1 interrupts are enabled a system interrupt will be
generated. The output on line PB7 will be inverted (it will go low on
the first interval) if outputs on this line are enabled.

4 — The latch contents will be reloaded into the counter and the
process repeated through from step 1 to 4 until disabled by changing
the operating mode.

Timer 2 occupies two registers of the 65622, one contains the low
order latch and counter value, the second contains the high order
counter, together they comprise a single sixteen bit counter. The
location of these two registers, number 9 and 10, in the VIC are as
follows:

Register 9 — Timer 2 low order latch/counter
VIANo.1. — Hex$9118 decimal 37144
VIANo.2. — Hex$9128 decimal 37160

Register 10 — Timer 2 high order counter
VIANo.1 — Hex$9119 decimal 37145
VIANo.2 — Hex$9129 decimal 37161

The operation of register 9 is a ‘write only’ latch and a ‘read only’
counter which contains the least significant byte of the the counter
value. The functions of the two registers are summarised in the
following commands to the registers of Timer 2 of VIANo. 1.

169

POKE 37144, 255 :put 255 into the low order latch

A = PEEK (37144) :variable A will contain the value in the low
order counter. This will clear the Timer 2
interrupt flag.

POKE 37145, 255 :put 255 into the high order counter and transfer
the contents of the low order latch to the low
order counter. Will clear the Timer 2 interrupt
flag.

A = PEEK(37145) A = contents of high order counter

Timer 2 has two modes of operation, these modes are selected by
the contents of bit 5 of the Auxiliary Control Register. In the first mode
Timer 2 acts as an internal timer (in the one-shot mode only) and in the
second mode as a counter of pulses input on peripheral line PB6. The
ACR contents controlling these two modes are as follows:

ACR bit 5 — ‘0" = one-shot interval timer
‘1" = pulse counting mode

The mode can be set with the following Basic commands:
ACRS = ‘0" POKE 37147, PEEK(37147) AND 223
ACR5 = ‘1’ POKE 37147, PEEK(37147) AND 223 OR 32

The operation of Timer 2 in the one-shot interval timer mode is
similar to the same mode on Timer 1 allowing the generation of a
single interrupt for each timer load operation. The delay between the
write operation and the interrupt is proportional to the value stored in
the two counter registers, this value being decremented at the 92
system clock rate. When the value reaches zero the interrupt is
generated. To use the timer in this mode the following sequence of
operations is performed:

1 - Set bit 5 of the ACR to logic ‘0 to give the correct operating
mode.

2 — Write the least significant byte of the interval count value into
the low order latch (location $9118 of VIANo. 1).

170

3 — Write the most significant byte of the interval count value into
the high order counter (location $9119 of VIA No. 1).

Operation 3 initiates the following events:

1 — The contents of the low order latch are transferred into the low
order counter.

2 — The contents of the counter have decremented at the ¢2 system
clock rate.

3 — When the counter reaches zero the Timer 2 interrupt flag is set
and if the interrupt is enabled a system interrupt generated.

4 — The counter will roll over and continue to decrement from a
value of decimal 65,5635. This allows the system processor 1o
determine the time since the interrupt. The Timer 2 interrupt flag will
not be reset until it is cleared by reading the contents of the low order
latch or writing to the high order counter. The latter will also initiate a
new interval timing sequence.

In the pulse counting mode the function of Timer 2 is to count a
predetermined number of negative going pulses input on peripheral
line PB6, the counter can also be used as a straight pulse counter. The
two registers of Timer 2 are loaded with a value. Writing into the high
order byte initiates the countdown and clears the interrupt flag. The
counter contents are decremented each time a pulse is applied to line
PB6. When the counter reaches zero the interrupt flag is set. To use
Timer 2 in the pulse counting mode requires the following sequence
of operations:

1 — Set bit 5 of the ACR to logic ‘1" to give the correct operating
mode.

2 — Set the Data Direction Register so that line PB6 is an input,
this can be done with the following command (the register location is
for VIA No. 1).

POKE 37138, PEEK(37138) AND 191

3 — Load the low order latch (location $3118 of VIA No. 1) with the
least significant byte of pulse count value.

171

4 — Load the high order counter (location $9119 of VIA No. 1) with
the most significant byte of the pulse count value.

Operation 4 initiates the following sequence of events:

1 — The contents of the low order latch is transferred into the low
order counter and the interrupt flag is cleared.

2 — The counter contents are decremented on a negative going
pulse. This pulse must have gone low prior to the leading edge of the
¢2 clock pulse, if not then the counter will not be decremented until
the next $2 clock pulse.

3 — The counter continues to be decremented by pulses input on

PB6 until the counter reaches zero. On reaching zero the interrupt flag
is set.

4 — The counter will roll over and contain the value decimal
65,535, further pulses input on PB6 will continue to decrement this
value. However, it will be necessary to rewrite the contents of the
high order counter or read the low order counter 1o reset the interrupt
flag.

Timer 2 is also used to control the frequency of input or output from
the internal shift register of the 6522.

Both the internal timers on the 6522 have several features in
common, the principle being that they are all ‘retriggerable’. This
means that the time-out period will always be re-initialised by
rewriting the counter. The value of this is that a time-out and its
associated interrupt can be prevented if the processor rewrites the
timer prior to its reaching zero. This is utilised by all the time-out
features of the I/C software on the VIC, thus allowing proper
detection of time-out errors. The second important feature is that
both counters have a 1 1/2 clock cycle ‘overhead’ on the time interval.
This means that the count value loaded into the timer must have a
value, two counts less, than the required interval.

172

THE SHIFT REGISTER

One of the internal registers of the 6522, register 11, functions as a
shift register, converting data between serial and parallel format.
Eight data lines, one control line and a ground line, are required to
transfer a byte of data from a peripheral I/O port like a VIA to an
external device. With serial transmission this same byte of data can be
transferred using just three lines, a data line, a control line and a
ground line. Serial data transmission is thus of considerable use in
controlling and communicating with external devices, where the
number of lines connecting the computer to the external device must
be kept to a minimum. The internal shift register of the 6522 allows
this serial input/output of data, though its functioning and flexibility
is less sophisticated than a standard UART (Universal Asynchronous
Receiver Transmitter). Besides generating or inputting serial data, the
shift register can perform a range of other functions, including
variable frequency pulses output on one of the VIA 1/O lines and a
means of expanding the 1/0O capability of the VIA.

Two 1/0 lines are associated with the operation of the shift register,
they are CB1 and CB2. The CB2 line is used for the serial transmission of
the byte of data either into or out of the shift register. CB1 is used to
carry the internally or externally generated shift clock pulses which
clock the serial data in or out of the shift register. Each pulse on the
shift clock shifts the entire contents of the shift register one bit to the
left, bit 7 being output on line CB2 or the current logical state of the
CB2 line input into bit 0. The contents of the shift register can be read
or data loaded into it, by the standard processor read or write
commands. There are three sources of the shift clock each having a
different function and application, they are:

1 — Timer 2 low order register. The bottom eight bits of the 16 bit
Timer 2 counter are used to create a programmabile rate shift clock. The
value loaded into the least significant byte of the timer controls the
time between transitions of the shift clock, two transitions are
required for one complete shift clock cycle. The value loaded into the
timer can be between 0 and 255 and the timer count down rate is
determined by the frequency of the processor $2 clock, in the VIC this
is MHz 1.1082. A delay time between transitions of 4.433 to 571.831
microseconds can be programmed between each shift operation. The
shift clock pulses generated by Timer 2 are output on line CB1.

173

2 — Microprocessor $2 clock. The processor clock can be
programmed to directly provide the shift clock pulses. The $2 clock
signal is divided by two, this gives a maximum shift clock on the VIC of
KHz 554.1 which gives a delay between each shift of 1.8
microseconds.

3 — An external signal applied to the CB1 line. This sguare wave
signal input on CB1 can be any frequency subject only to a maximum
of KHz 554.1.

The shift clock pulses are counted by a modulo-8 counter. When this
counter has counted eight shift pulses it sets the shift register flag in
the interrupt flag register. When the processor reads or writes data to
the shift register the shift register flag is cleared. By clearing the shift
register flag the modulo-8 counter is set to zero, the shift clock
enabled, and data shifted in or out of the shift register. After eight shift
pulses the flag is set and the shift clock disabled. In some modes of
operation the modulo-8 counter is re-triggered by a write command
to the shift register during a shift operation. In the free-running mode
the modulo-8 counter is not used, resulting in continuous repeated
output of the contents of the shift register.

The shift register of the 6522 has eight modes of operation and the
mode used is selected by setting bits 2, 3 and 4 of the Auxiliary Control
Register. The eight operating modes can be divided into four output
modes and four input modes, for VIA No.1., the modes and
commands are:

ACR2 =0’ ACR3 =0’ ACR4 =0’
Mode function — The shift register is disabled.

POKE 37147, PEEK(37147) AND 227

ACR2 ="1' ACR3 =0 ACR4 ='0'

Mode function — Input data on line CB2 and put into bit O of shift
register, under control of Timer 2 low order counter, shift clock pulses
output on CB1. Note: does not appear to work properly under Basic

commands.

POKE 37147, PEEK(37147) AND 227 OR 4

174

ACR2 =0’ ACR3 =1 ACR4 =0

Mode function — Input data on line CB2 under control of the system
$2 clock and put into bit 0 of shift register, shift clock pulses output on
CB1. Note: does not appear to work properly under Basic commands.

POKE 37147, PEEK(37147) AND 227 OR 8
ACR2 ="1" ACR3 =1’ ACR4 =0

Mode function — Free running output of the shift register contents
under control of Timer 2. In this mode the contents of the shift register
are recirculated, bit 7 of the shift register is shifted onto the CB2 output
line and simultaneously shifted into bit O of the shift register. The
frequency of the shift pulses is determined by the contents of the low
order byte of Timer 2. The result is the continuous repeated output of
the contents of the shift register. In this mode the CB2 line can be used
as a programmable frequency source or a simple music generator (by
connecting CB2 to an amplifier and speaker).

POKE 37147, PEEK(37147) AND 227 OR 16

ACR2 ="1' ACR3 =0 ACR4 = ‘1"

Mode function — Output data from shift register on line CB2 under
control of Timer 2. The time delay between shift pulses is determined
by the contents of the low order byte of Timer 2. A PEEK command to
the shift register will reset the shift register flag in this mode even
though the shift process is not completed.

POKE 37147, PEEK(37147) AND 227 OR 20

ACR2 ='0’ ACR3 = "1’ ACR4 ='1"

Mode function — Output data from shift register on line CB2 under
control of the system ¢2 clock.

POKE 37147, PEEK(37147) AND 227 OR 24

ACR2 ="1" ACR3 ="1" ACR4 ="1"

175

Mode function — Output data from shift register on line CB2 under
control of an external shift clock input on line CB1.

POKE 37147, PEEK(37147) AND 227 OR 28

176

INTERRUPTS

The 6522 VIA has only a single interrupt request line to the 6502
microprocessor, VIA No. 1, interrupt is connected to the processor
NMI interrupt and VIA No. 2., is connected to the IRQ interrupt. The
interrupt output from the VIA can be activated (pulled to a logic 'O’
level) by any one of seven different conditions. These conditions are
represented by bits in the Interrupt Flag Register (IFR), each bit or
‘flag’ can be set to either logic ‘1", the ‘on’ state, or to logic ‘0’ the ‘off’
state. These flags are set as a result of certain conditions arising from
the use of the other registers of the VIA. However, for one of these
flags to activate the IRQ line to the processor requires two things to be
true:

1 — The bit in the IFR that represents the condition which
generates the interrupts must be ‘on’ and thus set to logic '1".

2 — The corresponding bit in the Interrupt Enable Register (IER)
must also be set to a logic 1.

Without the correct bits in the IER being set an interrupt condition
will only set a flag in the IFR and will not generate a processor
interrupt. These two registers, the Interrupt Flag Register and the
interrupt Enable Register are thus directly connected in their function.
The location of these two registers, number 14 and 15 in the VIC are as
follows:

Regfster 14 — Interrupt flag register
VIANo. 1 —Hex$911D decimal 37149
VIANo. 2 —Hex $912D decimal 37165

76543210

l L CA2 interrupts flag
CA1 interrupt flag

Shift Register interrupt flag
CB2 interrupt flag

CB1 interrupt flag

Timer 2 interrupt flag
Timer 1 interrupt flag

IRQ has occurred

177

Register 15 — interrupt enable register
VIANo. 1 —Hex$911E decimal 37150
VIA No. 2 — Hex $912E decimal 37166

76543210

\ L— CAZ2 interrupt enable
CA1 interrupt enable

Shift register interrupt enable
CB2 interrupt enable

CB1 interrupt enable

Timer 2 interrupt enable
Timer 1 interrupt enable

|ER set/clear control

Each flag in the Interrupt Flag Register is set or cleared by a specific
operation to one or more of the other registers of the 6522, this is

summarised in the following table:

BIT SETBY
0 Active transition on CA2

1 Active transition on CA1
2 Completion of 8 shifts

Active transition on CB2

» W

Active transition on CB1

5§ Timeouton Timer2

6 Timeoutof Timer 1

7 AnyIFRbitwith
corresponding IER bit
also set

Bit 7 of the Interrupt Flag Regi

CLEARED BY

Reading or writing Output
Register A

Reading or writing Output
Register A

Reading or writing 10
Shift Register

Reading or writing Output
Register B

Reading or writing Output
Register B

Reading Timer 2 counter
fow byte or writing
Timer 2 high byte

Reading Timer 1 counter
low byte or writing
Timer 1 high byte

Writing logic ‘0" to the
appropriate bit in IFR

or IER

ster is connected to the IRQ output

line of the VIA , and is set to logic ‘1" when one of the other seven

178

lower order bits in the IFR is set, it thus signals the condition that an
interrupt has occured. Bit 7 of the Interrupt Enable Register is used to
control the contents of the other seven lower order bits. If bit 7 of the
IER is set to logic ‘1" then all other bits in that register which are set to
logic ‘1" will enable the interrupt request corresponding to that bit.
Thus the Timer 1 interrupt to the processor would only be enabled if
bits 7 and 6 are both set to logic ‘1'. If bit 7 of the IER is set to logic ‘0’
then any of the seven lower order bits of the IER which are set to logic
1" will disable the interrupt request corresponding to that bit. Thus all
processor interrupts from a VIA could be disabled by setting bit 7 of
the IEP to ‘0’ and all other seven bits to ‘1'. Initialising the |ER takes
two write operations, one to select the enabled interrupt conditions
and the other to select the disabled conditions. It should be noted that
bit 7 of the IER is only active during a Write operation, when the
contents are read it will always contain a logic ‘1" irrespective of its
actual contents. The enabling or disabling of interrupts using the |ER
does not affect the setting of interrupt flags in the IFR.

The NMI interrupt is connected to the IRQ output of VIA No. 1., and
the IRQ interrupt is connected to the IRQ output of VIA No. 2. When
one or other of these interrupt lines is pulled low by an interrupt from
one of the VIA's, the processor completes the current instruction
pushes the register contents and program counter onto the stack and
jumps to either the NMI of IRQ interrupt handling routines. The
starting addresses of the two interrupt handling routines are stored in
the top few bytes of memory. The NMI start address is located at
$FFFA and $FFFB and the IRQ start address at $FFFE and $FFFF. In the
VIC the start addresses of the interrupt handling routines point to two
jump addresses located in RAM, the RAM jump vectors, IRQ at $0314
and $0315 and NMI at $0318 and $0319. These RAM vectors contain
the actual start address of the interrupt handling routine. The reason
for using the RAM vectors is that it allows the programmer to change
the starting address of the interrupt handling routines, thus creating
his own interrupt handling routines.

Since there are as many as seven different conditions in the VIA
which can generate an interrupt request to the processor, a single VIA
might require as many as seven interrupt service routines. The VIC,
with two VIA chips connected to each of the two interrupt request
inputs of the 6502, has a potential requirement for up to fourteen
interrupt service routines in the system software (in practice only 6
are used). To determine which one of the seven interrupt conditions

179

of the VIA caused the interrupt request, a programming technique
known as polling is used. The interrupt handling routines show how

this is done by the VIC.

180

FUNCTION CONTROL

Control of the various functions and operating modes within the
6522 is accomplished primarily through two registers, the Peripheral
Control Register (PCR) and the Auxiliary Control Register (ACR). The
PCR is used to select the operating modes of the four peripheral 1/0
control lines. The ACR selects the operating mode of the two timers
and the shift register.

Peripheral Control Register (PCR).
The organisation and location of the Peripheral Control Register is
as follows:

Register 13 — Peripheral Control Register
VIANo. 1 —Hex $9110 decimal 37148
VIA No. 2 —Hex $9120 decimal 37164

Bit No. 7 6 5 4 3 2 1 0
| " control CBi o con CA1
Function CBZ‘ Contro Control CA‘2 CO'}UOI Control

The PCR has four seperate function fields, each associated with one
of the four 1/0O port peripheral control or ‘handshake’ lines.

CA1 Control — Bit 0 of the PCR selects the active transition of an
input on the CA1 line. If bit 0 of the PCR is set to logic ‘0", then the CA1
interrupt flag will be set by a negative transition on the CA1 line (the
line goes from a logic high to a logic low voltage level). If PCRO is set to
logic ‘1" then the CAT1 interrupt flag is set by a positive transition (low
to high).

CA2 Control — Bits 1, 2 and 3 of the PCR. The CA2 line can act as
either an interrupt input or a peripheral control output, there are
altogether eight different operating modes for this line, they are
summarised in the foliowing table:

PCR3 PCR2 PCR1 Mode
0 0 0 Input Mode. set CA2 interrrupt flagon a
negative transition of the input signal.

Clear IFRO on a read or write of the
Peripheral A Output Register.

181

0 0 1 Independent interrupt input mode. set IFROon
a negative transition of CA2 input signal.

Reading or writing ORA does not clear the
CAZ2 interrupt flag, can only be cleared by
writing ‘1’ to the appropriate IFR bit.

0 1 0 Input Mode. Set CA2 interrupt flag on a
positive transition of the CA2 input line.
Clear IFRO with a read or write of the
Peripheral A Output Register.

0 1 1 Independent interrupt input mode. Set
IFRO on a positive transition of CA2 input
signal. Reading or writing ORA does not
clear the CA2 interrupt flag, can only be
cleared by writing '1” to the appropriate
IFR bit.

1 0 0 Handshake output mode. Set CA2 output
low on a read or write of the Peripheral
A Output Register. Reset CA2 high with
an active transition on CA1.

1 0 1 Pulse output mode. CA2 goes low forone
processor clock cycle following a read or
write of the Peripheral A Output Register.

1 1 0 Manual output mode. The CA2 output is
held ‘low’ in this mode.

1 1 1 Manual output mode. The CA2 output is
held "high’ in this mode.

CB1 Control — Bit 4 of the PCR controls the active transition of the CB1
input fine in the same manner as that described for the CA1 line. In
addition if the Shift Register has been enabled line CB1 will act as an
output for the shift register clock pulses. In this mode the CB1
interrupt flag will still respond to the selected transition of the signal
on the CB1 line.

182

CB2 Control — When the serial I/0 capability of the shift register is
disabled then the function of the CB2 line is controlled by bits 5, 6 and
7 of the PCR. There are altogether eight different operating modes for
this line and they are summarised in the following table:

PCR PCR6 PCR5 Mode
0 0 0 Interrupt input mode. Set CB2 interrupt
flag (IFR3) on a negative transition of the
CB2 input line. Clear IFR3 on a read or
write of Peripheral B Output Register.

0 0 1 Independent interrupt input mode. Set
IFR3 on a negative transition of the CB2
input line. Reading or writing ORB does
not clear the CB2 interrupt flag, clear
by setting IFR3 to ‘1".

0 1 0 Inputmode. Set CB2 interrupt flagona
positive transition of the CB2 input line
Clear the CB2 interrupt flag on a read or
write of ORB.

0 1 1 Independent input mode. Set IFR3 on a
positive transition of the CB2 input line
Reading or writing ORB does not clear CB2
interrupt flag, clear by setting IFR3 to logic “1".

1 0 0 Handshake output mode. Set CB2 lowona
write ORB operation. Reset CB2 high with
an active transition of the CB1 input.

1 0 1 Pulse output mode. set CB2 low for one
processor clock cycle following a write
ORB operation.

1 1 0 Manual output mode. The CB2 output is

held ‘low’ in this mode.

1 1 1 Manual output mode. The CB2 output is
held ‘high’ in this mode.

183

Auxiliary Control Register (ACR).
The organisation and location of the Auxiliary Control Register is as

follows:

Register 12— Auxiliary Control Register
VIANo. 1 — Hex $911B decimal 37147
VIA No. 2 — Hex $912B decimal 37163

T 1
Bit No. 7 6 5 4 3 2 1 0
Function | Timer1 Timer 2 Shift Register PB PA
Control Control Control Latch Latch
‘ Enable | Enable

The ACR controls the operation of six of the 6622 registers, the way in
which it controls themis explained in detail in the sections covering those
registers.

184

188 — The Cassette Unit

197 — Vic Keyboard

204 — RS232 Serial Communications
216 — Joysticks

221 — Memory Expansion Connector
224 — Serial IEEE Port

5 VIC I/0 FUNCTIONS

186

‘sdiyd ZZG9 8Y3 03 UONIOBUUOD S) pue 3NJAD 811assed ay | — 9z “Bi4

73 o 9vd -1 VIA
& (331t S5V —° £8d -2 ViA
-
m
P4 v
—
m

93-NN Ao+

*10109UUOD 8118SSE2) 8y} UO suld O uoiOUNy pue uoneosojie syl — Gz Bi4

HOL1IMS 3113SSVO gd
J1I19M 3113SSVO 63
Qav3d 3113SSvO ¥-a
HOLOW 3LL3SSVO €0
AS+ cd
aNd® v

3dAl # Nid

4 34008V

9 6 v € ¢

l

187

THE CASSETTE UNIT.

The Cassette Hardware.

The VIC has a single external cassette unit which is used for
program and data storage. The cassette deck is connected to the VIC
by six lines — Write, Read, Motor, Sense, and two power lines, around
and +5 volts. The connections are shown in Figure.25.The cassette is
controlled by 1/0 lines from the two VIA chips and the source of each
of the cassette control lines from the VIAs is shown in Figure 26.The
cassette motor power supply lines are connected to the interface
chips via a three transistor driver used to boost the power and
voltage, allowing the motor to be driven directly. The output to the
motor is an unregulated +9 volts at a power rating of up to 500ma.
The cassette deck motor can be turned on and off by toggling the CA2
line on 6522 No. 1.:

POKE 37148, PEEK(37148) AND 241 OR 14 turns the motor on
POKE 37148, PEEK(37148) OR 12 ANDNOT 2 tumns it off

The sense line input, line PA6 on VIA No. 1., is connected to a switch
on the cassette deck which senses when either the Play, Rewind or
Fast Forward buttons have been pressed. The switch is only required
to sense the pushing of the Play button during a read or write to tape
routine, this is done by a subroutine at $F8AB. If either the rewind or
fast forward button is pressed accidently instead of the play button
the system will be unable to tell the difference and will act as if the
play button was pressed. For a similar reason during a record routine
the record button must be pressed before the play button since
recording will start as soon as the sense switch is closed by pressing
the play button.

The cassette "Read” line is connected to the CA1 line of VIA No. 2.,
and the cassette "“Write line to line PB3 of VIA No. 2. During a Read
operation the operating system uses the setting of the CA1 interrupt
flag to detect transitions on the cassette Read line. The functioning of
the Read and Write lines is controlled entirely by the operating
system, the only hardware required being signal amplification and
pulse shaping circuitry. These circuits are contained on a small PC
board within the cassette deck, their function being to give correct
voltage and current 10 the record head and amplify the input from the
read head to give a b volt square wave output able to produce an
interrupt on the CA1 or CB1 lines.

188

The Cassette Operation.

in normal usage the cassette deck is assigned an /0O device
number, the cassette is device number 1, the device number of the
device currently being used is stored in location 186. The device
number, the logical file number and the secondary address are used
when saving or retrieving data files from the cassette deck. The
logical file number can be any number from 1 to 255 and is used to
allow multiple files to be kept on the same device, it is of little use with
cassette tape and primarily intended for use with floppy disk units. It
is usual to have the logical file number the same as the device number,
the logical file number of the current file is stored in location 184. The
secondary address is important since it determines the operational
mode of the cassette, the current secondary address is stored in
location 185 the normal default value being zero. If the secondary
address is zero then the tape is Opened for a "‘read’” operation, if set to
1 then it is opened for a “‘write’" operation and if 2 then it is opened for
a "write’’ with an end of tape header being forced when the file is
closed.

The VIC operating system is configured to allow two different types
of file to be stored on cassette: program files and data files. These
names are however rather misleading since a program can be stored
as a data file and data can be stored as a program file. The difference
between these two file types is not in their application but in the way
the contents of the machine’'s memory is recorded. Instead of
program and data files we must look upon them as Binary and ASCI|
files.

A binary file is usually used to store programs, since a binary file is
created by the operating system to store the contents of memory
between a starting location and an end location. Called a binary file
because it stores on tape the binary value in each memory location
within the assigned memory area. Basic statements are stored in
memory using tokens. The use of tokens means that Basic commands
are not stored in the same manner as they are listed on the display or
were entered on the keyboard. They are instead stored in memory in a
partly encoded form. Being partly encoded, a binary file is a quicker
and more efficient way of storing programs. Binary files are essential
when saving and loading machine code programs.

The starting address from which a binary file will be saved is stored
in locations 172 and 173. These locations are loaded by the Save
routine with memory location at which the ‘save’ will begin, normally
they will be set to 0 and 4 thereby pointing to the start of the Basic text

189

176 s

256ps

176us

256ps

256yus

] 256us

1
176us 256us
176us
20}
336ps

_ 336ps

256yps

Fig. 27 — The output waveforms to the cassette recorder.

190

area at 1024. They can be altered by the ‘save’ routine to point to any
location in memory. The end address of the area of memory to be
saved is stored in locations 174 and 175. Normally when saving a Basic
program these are set to the address of the double zero byte
terminating link address. The end address can be altered to any
desired location. To change either of these addresses one can not use
the normal save routine since this automatically initialises these
locations. Instead one must write a small machine code initialisation
routine incorporating the desired operating system subroutines. By
default a Save command will write a binary file and a Load command
will read a binary file.

ASCI files are normally used to store data, (but can be used to store
progams, see Merge procedure) and the format is the same as that
displayed on the screen or entered on the keyboard. ASCIl files are
created or read almost exclusively by instructions from within a Basic
program. A binary file is created or read mostly by direct instructions,
although the LOAD and SAVE instructions can be used within a
program.

An ASCH file must first be opened with an OPEN statement, this
specifies the logical file, device number, secondary addressand file
name. The operating system interprets these parameters and allows
the user to read or write the file to the specified device. Data is written
to an ASCII file on a particular device with a command to PRINT to the
specified logical file number, and data is read by a READ from logical
file command.

Whereas a binary file is loaded with the contents of successive
memory locations, an ASCII file is loaded with a string of variables.
Storing these would require the tape to be turned on and off
repeatedly, storing a few bytes of data at a time. The VIC overcomes
this by having a 192 byte tape buffer into which all data to be written
“to"". or read '‘from" tape is loaded. Only when this buffer is full is the
tape motor turned on. Data is stored on tape in blocks of 192 bytes and
since the motor is turned on and off between blocks a two second
interval is left between blocks to allow the motor to accelerate and
decelerate. The beginning of the 192 character buffer starts at address
828. The pointer to the start of the buffer is located at address 178 and
179. The number of characters in a buffer is stored in locations 166.
These locations can be used by the programmer to control the
amount of space left in a data file. If having opened a file on cassette,
the command POKE 166,191 is executed then the contents of the tape
buffer even if empty are loaded onto the tape. If records are kept in

191

multiples of 191 bytes we can very easily keep nul or partially filled
records allowing future data expansion.

Whether the file being stored is binary or ASCIl the recording
method is the same involving an encoding method unique to
Commodore and designed to ensure maximum reliability of recording
and playback. Each byte of data or program is encoded by the
operating system using pulses of three distinct audio frequencies,
these are long pulses with a frequency of 1488Hz, medium pulses at
1953Hz and short pulses at 2840Hz. All these pulses are square waves
with a mark space ratio of 1:1, one cycle of a medium frequency is 256
microseconds in the high state and 256 microseconds in the low state.
The operating system takes about 9 milliseconds to record a byte of
data consisting of the eight data bits, a word marker bit and an odd
parity bit. The data bits are either ones or zeros and are encoded by a
sequence of medium and short pulses: a "'1"" is one cycle of a medium
length pulse followed by one cycle of a short length pulse and 0" is
one cycle of a short length pulse followed by one cycle of a medium
length pulse. Each bit consists of two square wave pulse cycles, one
short and one medium with a total duration of 864 microseconds. The
waveform timing is shown in the diagram in Figure 27.

The ‘odd parity’ bit is required for error checking and is encoded like
the eight data bits using a fong and short pulse, its state is determined
by the contents of the eight data bits. The ‘word marker’ separates
each byte of data and also signals to the operating system the
beginning of each byte. The word marker is encoded as one cycle of a
long pulse followed by one cycle of a medium pulse, see Figure 27.

Since a byte of data is recorded in just 8.96 milliseconds, a 192 byte
block of data in an ASCIl file should be recorded in just over 1.7
seconds. However, on timing such a recording we find it takes 5.7
seconds. There are two causes for this discrepency in timing. Firstly to
reduce the possibility of audio dropouts the data is recorded twice.
Secondly a two second inter-record gap is left between each record of
192 bytes.

The extensive use of error checking techniques is.one reason why
the tape system on the VIC is so much better than that available on
most other popular computers. There are two levels of error checking.
The first divides the data into blocks of eight bytes and then computes
a ninth byte, the checksum digit. The checksum is obtained by adding
the eighth data bytes together, the checksum is the least significant
byte of the result. On reading the tape if one bit in the eight bytes is

192

dropped and a zero becomes a one or vice versa the checksum can be
used to detect this error. To do this the same procedure to calculate
the check digit is performed, the result will be different to that stored
in byte nine, the check digit of that block computed when the tape
was recorded. The second level of error checking involves recording
each block of data twice. This allows errors detected by the check
digit to be corrected during the second reading of the 192 byte data
block. By recording the data twice a verification can be performed by
comparing the contents of the two blocks, this will detect the few
errors not detected by the checksum.

The use of pulse sequence rather than two frequencies as in a
standard FSK recording has a great advantage since it allows the
operating system to easily compensate for variations in recording
speed. Normally a hardware phase locked loop circuit would be used
to lock the system onto the correct frequencies coming from the tape
head, the VIC however uses software to perform this process. A ten
second leader is written on the tape before recording of the data or
program commences. This leader has two functions, first it allows the
tape motor to reach the correct speed and secondly the sequence of
short pulses written on the leader is used to synchronise the read
routine timing to the timing on the tape. The operating system can
thus produce a correction factor which allows a very wide variation in
tape speed without affecting reading. The system timing used to
perform both reading and writing is very accurate, based as it is on the
crystal controlled system clock and Timer 1 and Timer 2 of VIA No. 2.
Inter-record gaps are only used in ASCII files and their function is to
allow the tape motor time to decelerate after being turned off and
accelerate to the correct speed when turned on prior to a block read or
write. Each inter-record gap is approximately two seconds long and is
recorded as a sequence of short pulses in the same manner as the ten
second leader. There is also a gap between blocks, when the first
block of 192 bytes is recorded it is followed by a block end marker,
which consists of one single long pulse followed by 50+ cycles of
short pulses then the second recording of the 192 block starts, this is
identical to the first block.

The first record written on the tape after the ten second leader in
both ASCIl and binary files is a 192 character file header block. The file
header contains the name of the file, the starting memory location,
and the end location. In an ASCIl file these addresses are the
beginning and end of the tape buffer, in a binary file they point to the
area of memory in which the program is to be stored.

193

The file name can be up to 128 bytes long, the length of the file name
is stored in location 183, and when read is compared with the
requested file name in the Load or Open command. If the name is the
same then the operating system will read the file, if different then it
will search for the next ten second interfile gap and another header
block. The file name is stored during a read or write operation in a
block of memory, the starting address of which is stored locations 187
and 188. On completion of the operation these are reset to point to a
location in the operating system. The starting location is normally set
to the beginning of the user memory area, address 1024, however it
can be changed to point to any location, a method employed when
recording programs in a machine code using the monitor, and also in
the no copy program. The starting address is pointed to by the
- contents of locations 172 and 173, the end address being stored in
locations 174 and 175. Normally this is the highest byte of memory
occupied by the program, however it can be altered to point to any
address providing it is greater than the start address.

Important Memory Locations Used by the VIC Cassette.

$92 — temp used to adjust software servo

$93 — verify or load lag (0 = loading)

$96 — flags if we have block sync (16 zero dipoles)

$9B — holds currently calculated parity bit

$9C — cassette dipole switch

$9E — count of read locations in error pointer into $0100
$9F — count of re-read locations during pass No. 2.

$A4 — used to indicate which half of dipole we are in
$A5 — countdown for tape write; sync on tape header
$A6 — cassette buffer pointer

$A7 — tape short count

$A8 — flags errors (if zero then no error)

$A9 — counts zeros (if zero then correct No. of dipoles)
$AA — bits 6 & 7 hold function mode, rest = sync countdown

$AC-$AD — indirect address to start of tape data storage
SAE-SAF — indirect address to end of tape data storage

$B1 — holds dipole time during types calculations
$B2-$B3 — start address of tape buffer

$B4 — flags if we have a byte sync (a longlong)

$B5 — used to preserve sync outside of bit routines
$B6 — has combined error values from bit routines
$B7 — length of current file name string

$B8 — current logical file number

194

$B9 — current secondary address

$BA — current device number

$BB-$BC — address of current file name string

$BD -— receive input character

$BE — indicates which block we are looking at (0 to exit)
$BF — holds input byte being built

$CO — cassette manual/controlled switch

$C3-$C4 — cassette load temp storage

$D7 — holds most recent dipole bit value

$0100-$01FF — storage of bad read locations, bottom of stack
$0259-$0262 — logical file number table

$0263-$026C — device number table

$026D-$0276 — secondary address table

$033C-$03FC— cassette buffer

System subroutines used by the VIC cassette.

$F542-3F646 — Load RAM routine. Loads from cassette or serial
device as determined by contents of $BA. Verify flag in .A. Alternately
load if $B9 = 0 (normal $B9 = 1) X, .Y contain load address if .A = 0
performs load (0 is verify).

High load address returned in .X and".Y.

$FB675-$F734 — Save RAM routine. Saves to cassette or serial device
selected by contents of $BA. Start of save is indirect at .A, end of save
is . X, .Y.

$F7AF-$F889 — Find tape header information. reads tape until one of
the following block types is found: basic data file header, or basic load
file. For success carry is clear on return. In addition accumulator is O if
stop key was pressed.

$F88A-$FI8E — Miscellaneous tape control routines.
Includes:

FSBAB — cassette sense switch control

$F8B7 — check for play and record

$F8CO — read header block entry

$F8C9 — read load block entry

$F8E3 — write header block entry

$F8F4 — start tape operation entry point

$F95D — set up timeout watch for next dipole

195

$FO8E-$FABC — Cassette read routines. The character read is passed
to the byte routine in location $BF.

$FABD-$FBE9 — Byte handler for cassette read. The byte assembled
from reading tape is passed to this routine in $BD. $A8 is set if byte
read is in error and $A9 is set if the interrupt program is reading zeros.
$AA tells us what we are doing, bit 7 says ignore bytes until $A9 is set
and bit 6 says load the byte. Otherwise $AA is a countdown after sync.
if $93 is set we do a compare instead of store and set status. $BE
counts the two blocks, $9E is the index to the error table for pass No.
1., and $9F is index to correction table for pass No. 2.

$FBEA-$FD21 — Cassette write routines. Location $BE is the block
counter for record. If $BE = 2 then first header

= 1 first data

= 0 second data

Note: The IRQ vectors are changed during cassette operation, if the

user has reset these vectors then they should be restored to their
normal value prior to using the cassette.

196

THE VIC KEYBOARD

The VIC keyboard has a total of 66 keys, this comprises 64
alphanumeric and special function keys, the restore key and a shift
lock key. The 64 alphanumeric and special function keys are
connected as a simple matrix to the two eight line 1/0 ports of VIA No.
2., the way they are connected is shown in Figure 29. The restore key
connects the CA1 line of VIA No.1., to ground and is used to generate
an NMI processor interrupt. The shift lock is simply a mechanical
device for keeping the shift key depressed. The keyboard matrix is
scanned for a key depression by having one eight line 1/O port
configured as outputs and the other as inputs. Each output line is
connected via key switches to all eight of the input lines. If one of
those eight keys is depressed then the voltage level on the output line
will be transferred to the input line corresponding to that key. By
having a scanning sequence where each of the eight output lines in
turn go ‘low’ while the rest stay ‘high’ the operating system software
can determine which key in the 64 key matrix is currently pressed.

The scanning of the keyboard matrix and testing for depression of
the restore key are all under software control. The entire processor
time can not be devoted to keyboard scanning therefore scanning is
initiated by a regular 1/60 second interrupt. Keyboard scanning is one
of the functions of the IRQ interrupt servicing routine. The 1/60
second regular interrupt is generated by Timer 1 of VIA No. 2. The
interrupt service routine starts at location $EABF and the keyboard
scanning portion at SEB1E.

The keyboard scanning routine goes through a sequence of
operations the result of which is to place each input character into a
special section of memory, the keyboard buffer. The sequence is as
foliows:

1 — check if key pressed, if not then exit from routine.

2 — initialise 1/0 ports of VIA No. 2., for keyboard scan and set
pointers into keyboard character table No. 1., set character counter to
0.

3 — set one line of port B low and test for character input on port A
by performing eight right shifts of the contents of port A register, if
carry is set then character present. Each shift increments character
count, store character counterin .Y.

197

\ U w
wh - =
@
Hn
[}
-4

198

4 — go back to step 3 and repeat for next column, if character found
then continue.

5 — use character count value as index pointer into keyboard
character table to get ASCII code corresponding to depressed key.

6 — seeifitis a Shift or Stop key.

7 — evaluate Shift function.
if Shift key pressed then use character count to access
keyboard character table No. 2.
if CBM key pressed then use character count to access
keyboard character table No. 3.
if CBM and Shift pressed then use character count to
access keyboard character table No. 4.

8 — use character count value as index pointer into keyboard
character table designated in step 7.

9 — check for repeat key operation.

10 — check for screen editor keys and take appropriate action.

11 — do repeat if required.

12 — put ASCIl character obtained from the keyboard character

tables into the keyboard buffer, increment the pointer into the
keyboard buffer.

The contents of the 10 character keyboard buffer are accessed on a
first in first out basis by the screen handling routines. These routines
take the first character in the keyboard buffer, decrement the buffer
pointer and close up the buffer by moving the contents down one byte
thereby leaving space for new input characters. The exact function of
the screen handling routines depends on the mode of operation of the
VIC. If the VIC is in the Direct mode then the keyboard input is part of
Basic routine to receive a program line from the keyboard, the starting
address of this routine is $C560. If the VIC is running a Basic program
then keyboard input is part of the Basic character string input routine,
starting at location $CBBF.

In the Direct mode, characters are removed from the keyboard

199

HS HeH HexHe -
LD

o %]
—H0omo0al
D] X aghs
It

buffer and displayed or the screen, the character is also placed in the
88 byte Basic input buffer. This continues until a carriage return key is
pressed. The Basic interpreter then checks the contents of the Basic
input buffer to determine if the input is a valid command, and if so
then executes the command, if not returns a syntax error message.

In the program mode, characters are removed from the keyboard
queue when required by the Basic INPUT or GET commands during
the running of a program. It is in this mode that the keyboard buffer is
most useful, it allows a flexibility in timing between input from the
scanning routine, and the execution by the Basic interpreter of the
INPUT or GET command. This does have its drawbacks since any
characters in the keyboard buffer prior to the execution of the input
will be accepted as valid input characters. This can give rise to
spurious data input and can be avoided by clearing the keyboard
queue pointer (location 649 is set to zero).

One of the disadvantages of using the interrupt to initiate keyboard
scanning is that the interrupt routines are changed during /0
operations between the processor and the cassette or serial 1/0
devices. The drawback is that the user looses control of the system if
the keyboard is disabled as a result of a temporary sessation of
scanning. The principle control key required is the Stop key, this
allows the user to exit from an 1/O 'hangup’. The solution to this
problem is to leave the keyboard after each scan so that the column
containing the Stop key is still being scanned, this means that output
line PB3 is left in an ‘on’ state. The /O routines can then very simply
test for a depression of the Stop key by reading the input register of
port A on VIA No. 2. The Stop key routine is thus separated from the
rest of the keyboard scanning routines, the Stop key routine is in two
sections:

$F755 — this is part of the time function routine which is called in all
[RQ servicing routines, it updates the real time clock and checks the
Stop key. The contents of Port B of VIA No.2., are read, debounced to
make sure that the contents are stable and then stored in the Stop key
flag — location $91.

$F770 — this part of the routine is the main Stop key routine, it is
called by an indirect address stored in the Stop key RAM vector at
location $0328. This routine takes the contents of location $91 and
compares it with the value $FE if equal then the Stop key has been

201

O e B L0 00 PO e s et e et s e el LT OS]

PRI RN
£ LN LN

iy 48

Fig.

o O T 0 0 g Ty) e P e R

FEM $ROUTIME TG TEST WHICH FUNCTION

REM %KEY HAS BEEM FREZZED
FEM
FEM
REM #MHICH KEY FRESSED™
REM
A=FEEK {2683
FEM
REM #SHIFY KEY DHIWNY
REM
=FEEK(ES3:
mEM
FEM ¥DECODE KEY HUMEBER
REM
K=
IFA=35THEMK=1 : GOTOSE
IFA=47THENK=3: GOTO58
IFA=SSTHEMK=5 GOTOSH
[FA=83THENE =T ' GOTOTE

GOTO18

IFE1 THEHE=&

K=k+F

FRIMT"FUHCTION KEY"E"FRESSED"
GOTOLS

30 — Program to use VIC function keys.

202

depressed. This initiates the clearing of the keyboard queue and I/O
channels prior to returning to direct mode operation. If the Stop key
has not been pressed then control returns to the calling routine.

$FEA9 — routine to handle an NMI interrupt, this is generated if the
“Restore’’ key is pressed, the “‘restore” function is only initiated if the
"Stop”’ key is also pressed. If both keys are pressed then a Basic warm
start is initiated by a jump to $0002.

Important memory locations used by the VIC keyboard.

$91 — Stop key flag set if Stop key depressed
$Cb — Key scan index

$C6 — Index to keyboard queue

$F5-$F6 — Indirect jJump address to keys on table

$0200-$0258 — Basic input buffer
$0277-$0280 — Keyboard buffer

$028A — Key repeat flag

$028D — Shift flag

028F-$0290 — Indirect jump address for keyboard table
$0291 — VIC mode (CBM key pressed?)

System subroutines used by keyboard.

$C560 — routine to get Basic command from the keyboard and
place in the Basic input buffer ready for the interpreter.

$CBBF — routine performs the Basic character string input function.

$E5CF — remove character from keyboard queue and return in .A

$EBAF — input line until carriage return key is pressed, part of Basic
input routine.

$E742 — displays character in .A on the screen at the current cursor
location.

$E800 — handles shift keys

$EABF — IRQ service routine

$EB1E — general keyboard scan, uses keyboard character tables to
obtain correct ASCll code for character and puts character into
keyboard queue.

$EBDC — shift key logic

$ECBHE — start of keyboard character table No. 1.

$ECIOF — start of keyboard character table No. 2.

$ECEOQ — start of keyboard character table No. 3.

$ED72 — start of keyboard character table No. 4.

203

RS232 SERIAL COMMUNICATIONS

The VIC is able to communicate with peripheral devices; printers,
modems etc, using a serial communications port, known as an RS232
I/0 port. The name RS232 simply refers to an industry standard form
of serial communication for computing devices. A serial |/O port can
consist of as few as three lines, an output or transmit line, an input or
receive line and a common ground line. The data is transmitted or
received as a stream of pulses, a single byte becomes a string of eight
pulses,

Although a serial port can have just three lines, other lines are
frequently used to transfer control information. The VIC is able to
receive and generate such control signals to implement a full ‘X line’
interface as well as the simple ‘3 line’ interface. Whichever
implementation is used all the lines are connected to 1/0 Port B of VIA
No. 1., the same lines used for the user port. Normally an RS232
interface card will be used to connect between the parallel port and a
standard RS232 connector, the card will also provide buffering and a
higher drive voltage. For communications using the simple 3 line
mode an interface card can easily be constructed using a couple of
buffer/driver ICs. The RS232 line normally transmits uata using a 12
volt signal, however, providing cables are kept short it will work with
a 5 volt signal. The standard RS232 connector is shown in Figure 32,
the function and pin assigment of each of these lines is as follows:

VIA RS232 VIA Abv EIA In/ Modes Function

line No. pinNo. pin No. Out
GND 1 A GND AA — 1,2 Protective ground
CB1 3 B SIN BB In 1,2 Received data
PBO 3 C SIN BB In 12 Connected to SIN
PB1 4 D RTS CA Out 2 Request to send
PB2 20 E DTR CD Out 2 Data terminal ready
PB3 18 F Rt CE In 3 Ring indicator
PB4 8 H DCD CF In 2 Received line signal
PB6 5 K CTS CB In 2 Clear to send
PB7 6 L DSR CC In 2 Data set ready
CB2 2 M SOUTBA OQut 1,2 Transmitted data
GND 7 N GND AB — 23 Signal ground
Modes:
1 — 3 -line interface (note RTS and DTR are both held high during this
mode).

2 — X-line interface.

204

1 2 3 45 6 7 8 9181112

A B CDEFH J KLMN

RS$232 FUNCTION

Fig. 31 — VIC RS-232 connector and pin allocations.

PIN
1 Protective Ground AA
2 Transmitted Data BA
3 Received Data B8
4 Request To Send CA
5 Clear To Send cB
- Xe] [Data Set Ready cc
20 7 Signal Ground AB
oL} 3 8 Carrier Detect CF
Ote o 9 (not used)
o 40 10 "
50 1
Qls 6o 12 "
ol9 13 "
oo 1° 14 .
80 15 ”
O2i 16 "
90
022 17 "
oz 100 18 ”
1O 19 v
O24 120 20 Data Terminal Ready cD
o2 3 21 {not used)
~—30] 22 2
23 "
24 "
25

Fig. 32 — Standard RS-232 connector and EIA line coding.
205

3 — User available only and not implemented or used in the VIC RS232
code.

The implementation of the RS232 port on the VIC is very interesting
since It involves the use of software to emulate a hardware device.
The hardware is the 6551 Universal Asynchronous Transmitter and
Receiver or UART. It was originally intended by the VIC designers to
use this chip to generate the RS232 I/0O, however, MOS v/ere unable
to deliver usable devices in time for the VIC production, and software
emulation had to be employed. An exact emulation of the function of
the 6551 is used since this allows the manufacturers to change the VIC
hardware design to incorporate the 6551 as soon as this device
becomes avallable. Like the other I/O chips the 6551 functions are
controlled by registers at specific memory locations. The pseudo 6551
registers are located in various parts of the variable storage area at
the bottom of VIC memory. Besides the registers, the RS232
operating routines require two 256 byte buffers, one for received data
and the other for transmitted data. The 512 bytes of memory occupied
by these buffers is located at the top of available RAM memory, the
starting address of the two buffers is stored in four register bytes. The
two most important registers are the Control, and Command
Registers, these determine the exact operation of the RS232 port,
they can be summarised as follows:

The 6551 Pseudo Control Register — Hex $0293 decimal 659

The function of the Control register is to set the speed of data
transmission and reception and set the number of bits needed to
transmit each character. The speed at which data is input or output is
called the baud rate, and the value assigned to this is the number of
bits per second. If the baud rate is set to 300 baud, and each character
is transmitted as the eight character bits plus one stop bit and one
parity bit — total of ten bits — then 30 characters will be transmitted
every second. The selected baud rate depends on the specifications of
the device communicating with the VIC via the RS232 port, check the
manual of the device before setting this value. Bits 5, 6 and 7 control
the number of bits needed to transmit or receive data between the
VIC and a peripheral. The number of bits per character plus the
number of stop bits depends on the device communicating with the
VIC via the RS232 port.

The 6551 Pseudo Command Register — Hex $0294 decimal 660
The Command Register controls the mode of data transmission and

206

STOP BITS
0=1STOPBIT BAUD RATE
1=2 STOP BITS
ofo|ofo| USERRATE NI
ofofo]1 50 BAUD
ofol1]0 75
WORD LENGTH REE o
1 .
BIT |DATA 0j1;010 1345
& [5 |WORD LENGTH of1]o]1 150
olo] sBiITS o[1]1]o0 300
ol1] 7BITs of1[17]1 600
1]o] eBITS 1]olo]o| 1200
1[1] ssiTs 11olo]1] 1800 2400
1lo|1]o] 2400
1lol1]1] 3600 (NI
1[1]olo]| 4800 N
UNUSED BIT
1]l 1] 7200)
1[1]1[o] 9e00 ()
(NI) Not implemented in the VIC-20 system | | ' | 1|1} 19200 (ND

Fig. 33 — Function of bits in VIC RS-232 Control register.

207

reception. Bit O sets the mode, a 3 line mode or a X line mode. Bit 4 sets
the Duplex mode as follows:

Full Duplex — simultaneous transmission and reception of data.
Half Duplex — alternate transmission and reception of data.

Bits 5, 6 and 7 determine the nature of the parity bit and whether the
mark or space is transmitted. The parity bit is transmitted after the
data bits and has an error checking function, the choice of whether the
parity is disabled or is set to odd or even depends on the specification
of the communicating device attached to the VIC RS232 port. The
mark/space setting determines whether a logic ‘1’ is transmitted as a
zero voltage or a positive voltage, this is shown in Figure 4.

The RS232 Status register — Hex $0297 decimal 663

The other memory locations and pseudo 6551 registers are as
follows:

$A7 — receiver input bit temporary storage

$A8 — receiver bit count in

$A9 — receiver flag Start bit check

$AA — receiver byte buffer/assembly location

$AB —receiver parity bit storage

$B4 — transmitter bit count out

$B5 — transmitter next bit to be sent

$B6 — transmitter byte buffer/disassembly location

F7-$F8 — a two byte pointer to the receiver buffer base
location

$FO-$FA — a two byte pointer to the transmitter buffer base
location

$0298 — the number of bits to be sent/received

$0299-$029A — the time for transmission of one bit cell based on
system clock/baud rate

$029B — the byte index to the end of the receiver FIFQ buffer

$029C — the byte index to the start of the receiver FIFQ buffer

$029D — the byte index to the start of the transmitter FIFO
buffer

$029E — the byte index to the end of the transmitter FIFQ
buffer

208

T E R A0

PARITY OPTIONS

‘BlT BIT|BIT
21615 OPERATIONS

M 0 Parity disabled, none
Generated/Received
Odd Parity

010} Receiver/Transmitter

ol ! Even Parity
Receiver/Transmitter

1 0 1 Mark Transmitted

Parity Check Disabled
1 1 1 Space Transmitted
Parity Check Disabled
DUPLEX

0= FULL DUPLEX
1= HALF DUPLEX

|

UNUSED

HANDSHAKE

0= 3LINE
1= XLINE

Fig. 3¢ — Function of bitsin VIC RS-232 Command register.

209

RS232 System Routine Entry Points

$EFA3 — entry for NMI continue routine

$EFBF — calculate parity, $B5 = 0 upon entry

$EFE8 — count stop bits

$EFEE — entry to start of byte transmission

$EFFB — set up to send next byte

$F016 —seterrors

$F027 — calculate No. of bits to be sent, returns No. bits+1

$F036 — NMI routine to collect data into bytes

$F040 — calculate parity

$F046 — shift data bitin

$F04AB — have stop bit so store in buffer

$FO5B — enable to receive a byte

$F068 — receiver start bit check

$FO6F — putdata in buffer (at parity time)

$FO8B — parity checking

$F094 — check calculated parity

$FO9F — errors reported

$FOBC — output a file over user port using R$232

$FOC4 — check for DSR and RTS

$FOCD — check for active input, RTS will be low if currently
inputting

$FOD4 — wait for CTS to be off

$FOD9 —turnon RTS

$FOE1 — wait for CTStogoon

$FOED — buffer handler to output a character

$FOFC — set up if necessary to output

$F102 — set up for a first byte out

$F10E —setupforT1 NMI's

$F116 —input a file over user port using RS232

$F122 —checkif DSR and not RTS

$F12B — wait for active output to be done

$F130 —turn off RTS

$F138 — wait for DCD to go high

$F13F — enable CB1 for RS232 input

$F146 —if not 3 line half then see if we need to turn on CB1
$F14F — inputa character buffer handler
$F15C — receiver always runs

$F160 — protect serial/cassette from RS232 NMl's

210

7le6l514]13(2{1}10

L PARITY ERROR BIT

L—— FRAMING ERROR BIT

RECEIVER BUFFER OVERRUN BIT

t———————— UNUSED

CTS SIGNAL MISSING BIT

UNUSED

DSR SIGNAL MISSING BIT

BREAK DETECTED BIT

RS-232 STATUS REGISTER — $0297

Fig. 35 — Function of bits in VIC RS-232 Status register.

21

Using the RS232 Port

Opening an RS232 Channel
Basic Syntax: OPEN if, 2, 0, “(control register) (command
register)”

If — Normal logical file ID (1-255). If 1f/127 then line feed follows
carriage return

(control register) — an ASCIl character equivalent to the required
bit setting of the Control Register. Example: to set baud rate to 300
and transmit 7 bit code use CHR$(6+32) — this sets bits 1, 2 and 5 to
logic ‘1" and leaves the rest at logic ‘0".

(command register) — an ASCII character equivalent to the required
bit setting of the Command Register. Example: to set the output to
mark parity and full duplex use CHR$(32+128) — this sets bits 5 and 7
to logic ‘1" and leaves the rest at logic ‘0"

Machine Code Entry Point: Hex $FFCO

Notes on Usage: Only one RS232 channel should be open at any
time, since the OPEN statement resets the buffer pointers, a second
OPEN will destroy any data in the buffers set up in the first OPEN. The
OPEN RS232 channel command should be used before any variable or
DIM statements, failure to do this will cause wiping of data. This is
because the OPEN RS232 channel command performs an automatic
CLR before allocating the 512 bytes at the top of memory used for the
two RS232 data buffers. If there is insufficient space at the top of
"memory for the 512 byte buffer then program destruction will result.
The file name field in the OPEN command statement can have up to
four characters, only two characters are currently used by the system
(see Basic syntax) the other two characters are for future systems
options. No error checking is done by the system on the contents of
the control or command characters, errors in baud rate selection will
cause system malfunction. A non-implemented baud rate will cause
an index to bad page data, and output will be set to a rate below 50
baud.

212

Receiving Data From an RS232 Channel.
Basic Syntax: GET # If, (string variable)

If — logical file ID used in OPEN RS232 channel command
Machine Code Entry Points:

$FFC6 — Open channel for Input. Handles full X-line implementation
according to EIA standard RS232C interfaces. The RTS, CTS and DCD
lines are implemented when the VIC is designated as a Data Terminal
device.

$FFE4 — Get character from buffer

Notes on Usage: Received data is put into the VICs 255 byte
internal receiver buffer set up during the OPEN RS232 channel
command. Data input is under control of the 6522 timers and
interrupts and is performed in the background during the running of a
Basic program. This is done by having the RS232 data input line
connected to the CB1 handshake line, an input on CB1 will generate
an NMI system interrupt. The use of NMI interrupts is the reason why
the cassette and serial bus should not be used during RS232 data
communications. The NMI interrupt will call the serial data input
routines whenever data is present on the RS232 input. These routines
will place the received data into the 255 byte receiver buffer located at
the top of RAM memory. If the input data has a word width less than
eight bits then all unused bits will be filled with zero.

The receiver buffer is organised as a First In First Out — FIFO —
buffer. The buffer removes the necessity for Basic to wait for data
input before processing each byte of data. Instead the Basic program
can take data from the buffer when it needs it rather than when it is
presented. Basic accesses the buffer using the GET command to
transfer a single byte of data into a Basic variable. If there is no data in
the buffer then the GET 2t command will return with a null
character. If the buffer should overflow then all characters received
during the overflow condition are lost, an overflow condition is
indicated by bit 2 in the RS232 Status register being set. An overflow
condition will frequently result, if an attempt is made to input data at
fairly high data rates using Basic. This is because Basic is normally
slow and the use of the GET command with string concattination will
give rise to frequent garbage collects. Machine language routines are
best used for data rates above the normal 300 baud.

213

Transmitting Data to an RS232 Channel

Basic Syntax: CMD If
PRINT ££ If, (variable list)

If — logical file ID set up in the OPEN RS232 channel command
Machine Code Entry Points:

$FFC9 — Open channel for output. This handles X-line handshaking
for the implementation of an EIA standard RS232 interface. The RTS,
CTS, and DCD lines are implemented with the VIC as a Data Terminal.

$FFD2 — Output character to channel

Notes on Usage: When either one of the two Basic commands are
used data is first transferred from the assigned string or memory block
to the 255 byte transmitter buffer. From here it is output to the RS232
channel using the format and baud rate assigned in the OPEN RS232
channel command. Data output is transparent to the operation of
Basic since the timing is done by the 6522 timers and output of each
byte initiated by an NMI system interrupt. As with data input on the
RS232 the cassette or serial IEEE port should not be used during data
transmission on the RS232 otherwise interrupt conflicts will occur.
There is no carriage return delay implemented by the output channel,
therefore a normal RS232 printer cannot correctly output the data,
unless some form of internal buffering or other hold-off is
implemented by the printer. If a CTS handshake is implemented (in
the X-line mode) then the VIC buffer will fill, and output will not
occur until transmission is allowed by an input on CTS.

Closing an RS232 Data Channel.
Basic Syntax: CLOSE If

If — logical file ID set up in the OPEN RS232 channel command
Machine Code Entry Points

$FFC3 — Close logical file

Notes on Usage: Closing the RS232 file causes all the data in the
buffers to be discarded, stops data transmitting or receiving, sets the

214

RTS and SOUT lines high, and de-allocates the memory area used for
the RS232 buffers. Closing the RS232 file will also allow the cassette
or serial IEEE ports to be used. Before closing the channel care should
be taken to ensure that all data in the buffer is transmitted. This can be
done by checking the status (ST variable is = 0) and that bit 6 of
parallel Port A of VIA No. 1 location 37151 is set to logic 1, if both are
true then there is still data in the buffer.

215

THE JOYSTICKS

Two different types of joysticks can be attached to the VIC, a simple
paddle switch joystick, and a potentiometer joystick. The principle
application for joysticks is in interactive games and simulation
programs. The joystick is used to control the position of an object on
the screen, this can be either the cursor or a special graphics character
or characters. Alternatively the cursor can be used to change the
viewing position, using the joystick like the control stick on an
aircraft. The choice of which type of joystick is used depends on
whether fine positional control or simple left, right, forward or
backward input is required. If fine positional control is required where
a particular joystick position has a unique value, then a potentiometer
joystick is-required. If simply telling the computer the direction of the
joystick movement, using one of eight directions is adaquate, then a
switch joystick is the best choice.

Switch Joystick
A switch joystick consists of four switches mounted at right angles
to each other. The joystick handle is connected to a mechanism which
allows no more than two adjacent switches to be closed at any one
time. The joystick handle has nine possible positions:
one with no switches closed — the handie is vertical
four positions with one switch closed — handle in north, south,
east, and west positions.
four positions with two switches closed — handle in north east,
south east, south west, and north west positions

An extra switch is usually mounted on the end of the joystick
handle, called the ‘Fire button’. This is usually used to indicate to the
computer when the cursor or games figure is in the right position on
the screen. Each of the switches is connected to one of the I/0 lines
from the 6522 VIAs. The joystick switches are arranged as follows:

Button’ Switch 4 Switch 0 TOP (north)

Switch 2 Switch 3

Switch 1

216

PIN NOTE

+5v | MAX 1oemA

Fig. 36 — The allocation and function of pins on the Joystick connector.

+5V
100k ohm
POT X or
POT Y input
— -imfd
P .
“— GND
v

Fig. 37 — Potentiometer joystick circuit.

217

Switches 0, 1 and 2 and the 'Fire button’ are connected to lines from
VIA No. 1., and switch 3 to a line from VIA No. 2. The VIA memory
locations used by the switch joystick are as follows:

Hex Decimal Function
$9113 37139 Data Direction Register for Port A VIA No. 1.
$9111 37137 Output Register A

bit 2 — joystick switch 0
bit 3 — joystick switch 1
bit 4 — joystick switch 2
bit 5— 'Fire button’

$9122 37154 Data Direction Register for Port B VIA No. 2.

$9120 37152 Output Register B
bit 7 — joystick switch 3

To read the joystick switch inputs the 1/O lines used must first be set
into the input mode. Achieved by setting the corresponding bit of the
Data direction Register to 0. This poses one problem, the line used for
joystick switch 3 is also used for scanning the keyboard. Thus the
keyboard can not be used in full at the same time as the switch
joystick, and the Data Direction Register should always be restored
to normal after the joystick is used. The following program can be
used to initialise the Data Direction Registers and input the switch
position.

10 POKE 37139,0 : POKE 37154,127 : setup DDRs
20 S = PEEK (37137) : input from VIA No. 1.

30 S0 = ((SAND 4) =) : switch 0

40S1 = ((SAND S) : switch 1

50 S2 = ((SAND 16) = 0) : switch 2

60 F = ((SAND 32) = 0} : ‘Fire button’

70 S = PEEK (37152) : input from VIA NO. 2.

80 S3 =— ((SAND 128) = 0) : switch 3

90 POKE 37154,255 : restore keyboard function

The variables SO, S1, S2 and S3 will normally be 0 but if the joystick

handle is pointed in that direction their value will be either 1 or —1. If
the ‘Fire button’ is pressed then the variable F will have a value of 1,

218

otherwise it will be 0. These variables can be used to decode the
the joystick into the following pattern:

TOP

The following program lines will convert the variables SO, S1, S2
and S3 into the values shown in the pattern which correspond to the
handle position and store in variable P:

100 DATA 7,0, 1,6, 8,2, 5, 4,3 : data for joystick pattern
110FORI=0TO2

120FORJ=0TO2

130 READ JS (J, 1) : put joystick pattern into array

140 NEXT J, |

150 X = 1+(S2 + S3) : Y = 1+(S0 + S1)

160 P = JS(X, Y) : set P to joystick pattern value

Potentiometer Joystick

A potentiometer joystick consists of two potentiometers mounted
at right angles to each other in a mechanism which allows the joystick
when moved to change the wiper position on one or both
potentiometers. One potentiometer registers the joystick movement
in the X axis, the other in the Y axis. The rotational movement of each
potentiometer is divided by the computer into 255 divisions. With the
joystick centered vertically the X and Y potentiometers will each have
a value of 128. The position of the joystick can thus be mapped in
terms of graph co-ordinates, thus:

219

X AXIS POTENTIOMETER

255 (top)
180

200*

[128
Y AXIS 255 * 0 {right)
POTENTIOMETER 128

0 (bottom)

The two potentiometers are connected together with a small
amount of additional circuitry to two special inputs on the 6561 VIC
chip, their pin assignations on the output connector are shown in
Figure 36, The input to the 6561 is used to convert the potentiometer
position into a microprocessor readable 8-bit number. This is
accomplished by a simple RC time constant integration technique.
The potentiometer is used to charge an external capacitor connected
to one of the pot pins and ground. This simple circuit is shown in
Figure 37.

The 6561 converts the potentiometer position into a value which
the processor can read by accessing one of the two potentiometer
registers, the memory location of these two registers is;

Hex $9008 decimal 36872 — digitised value of POT X
Hex $9009 decimal 36873 — digitised value of POTY

The value stored in these two registers can be accessed simply
using PEEK or LDA commands.

220

THE MEMORY EXPANSION CONNECTOR

The memory expansion connector allows additional memory or /0
to be added to the VIC. The 44 line connector gives external
equipment access to the VIC system data bus and address bus plus
the necessary control lines. These connections are shown in Figure 38.
The connector required to attach equipment to the expansion
connector is a 44 pin (22/22) male edge connector with a .1566 inch
connector separation (a double sided etched PC board can be used).
The user must exercise great care when interfacing equipment 1o
these lines, since they are not buffered and any malfunction of the
external equipment may damage the VIC. The memory expansion
port lines can be divided into five groups:

Data Bus — the eight data lines used to transfer data between
processor and memory.

Address Bus — the fourteen least significant address lines are
available, they allow any memory location in an 8K block to be
accessed by the processor. Which of the 8 memory blccks is accessed
depends on the block select lines.

Contro! Bus — the six control lines govern system clock, IRQs. Reset,
and R/W select.

Block Select — there are nine block select lines, these are generated
by partly decoding the most significant address lines. They are used
to select the block of memory or I/0 addressed by the 1/0 bus.

Power Lines — power output is available at +5 volts and Ground,
the power rating is approximately 750ma.

The signals available on the memory expansion connector are as
follows:

Name PinNo. Description

GND 1 System Ground
GDO 2 Data bus line0
CD1 3 Data bus line 1
CD2 4 Data bus line2
CD3 5 Data bus line 3
CcD4 6 Data bus line 4
CD5 7 Databusline 5

221

MEMORY EXPANSION

12345678 910111213141516171819202122

ABCDEFHJKLMNPRSTUVWXY2Z

PIN# | TYPE PIN# | TYPE
1 GND 12 BLK3
2 cD¢ 13 BLK5
3 CD1 14 RAM1
4 CD2 15 RAM2
5 cD3 16 RAM3
6 CD4 17 VRW
7 CD5 18 CRW
8 CD6 19 IRQ
9 co7 2¢ NC

19 BLK1 21 +5V
1 BLK2 22 GND
PIN# | TYPE PIN# | TYPE
A GND N CA1f
B CAg P CANM
C CA1 R CA12
D CA2 s CA13
E CA3 T 1192
F CA4 U 1183
H CA5 v S¢2
J CA6 W NI
K CA7 X RESET
L CA8 Y NC
M CA9 z GND

Fig. 38 — The allocation and function of pins on the Memory Expansion
connector.

222

RESET
(NC)
GND

223

1
12
13
14
15
16
17

18

N<X§<C4meZZrKLIﬂm00w>E§85

Databus line 6

Databus line 7

8K decoded RAM/ROM block 1, starting at $2000,
(active low).

8K decoded RAM/ROM block 2, starting at $4000,
{active low).

8K decoded RAM/ROM block 3, starting at $6000,
{active low).

8K decoded ROM block 5, starting at$A000
(active low).

1K decoded RAM at $0400, (active low).

1K decoded RAM at $0800, (active low).

1K decoded RAM at $0C00, (active low).

Read/Write line from VIC chip, (high = read
low = write).

Read/Write line from CPU. (high = read,
low = write).

6502 IRQ line, (active low).

+5 volt power line.

System Ground.

System Ground.

Address bus line 0

Address bus line 1

Address bus line 2

Address bus line 3

Address bus line 4

Address bus line 5

Address bus line 6

Address bus line 7

Address bus line 8

Address bus line 9

Address bus line 10

Address bus line 11

Address bus line 12

Address bus line 13
Decoded 170 block 2, starting at $9130
Decoded 1/0 block 3, starting at $9140
Phase 2 system clock

6502 NMI line, (active low)
6502 RESET line, {active low)

System ground

THE SERIAL IEEE PORT

This is a very cut-down version of the |IEEE-488 port available on PET
computers. In the normal IEEE, bus data is transferred in parallel form
on eight data lines. In the VIC implementation, it is transferred serially
on a single line. The VIC IEEE bus consists of just six lines, three output
and three input. The three input lines carry data and control pulses
from a communicating device to the VIC, the three output lines have
an identical function, and output data from the VIC to the peripheral
device. The three lines consist of a serial data line, a clock line to clock
pulses off the data line, and a service request or attention command
line. The functioning of the serial IEEE port on the VIC is very
rudimentary compared to the IEEE implemented on the PET, but is
adequate for many applications requiring communications between
the VIC, and, either a peripheral device, other VICs or a larger
computer. If the full IEEE-488 bus is required then the IEEE-488
expansion module should be used. This is very useful if one wishes to
connect the VIC to other IEEE-488 devices, in particular the PET
peripherals.

Definition of the IEEE port

An |EEE-488 type port, whether the simple serial port available on
the unenhanced VIC, or the full implementation of the expansion
module, has considerable advantages over a serial RS232 port or a
parallel user port. The advantage is that an IEEE-488 type port is
capable of communicating with more than one device connected to a
single set of I/O lines. It does this by means of the control lines and a
strict protocol of commands between the listening device and the
talking device. There are three classes of device which can be
attached to the IEE bus, they are:

Controller — one device which controls bus operation
Listener — a device receiving data from the bus
Talker — a device transmitting data onto the bus

With the existing operating system software in the VIC, only the VIC
can act as a controller, though it can also act as either a listener or
talker. All the peripheral devices can be either listeners or talkers,
though only one device at a time may be a talker on the bus, Figure40
shows how the VIC and peripheral devices communicate via the |[EEE
bus. The ‘controller’ as its name implies controls the data transfer
along the bus, and determines which devices act as ’listeners’ and
which device is the ‘talker. It does this by individually addressing each

224

PIN#

TYPE

OWVMesWwN -~

SERIAL SRQ IN

aND

SERIAL ATN IN/OUT
SERIAL CLK IN/OUT
SERIAL DATA IN/OUT
NC

Fig. 39 — The allocation and function of pins on the |EEE Port connector.

Clock

GND
SRQ
ATN

VIC — Controller

Data__in /out ‘

Disk Drive

— talker or

— listener

Printer

— listener

Fig. 40 — The interconnection of devices via the serial |IEEE port.

225

device and sending it a set of commands, these set the device as
sither a ‘listener’ or ‘talker’ and in addition can control other functions
of the device. Each device has its own unique address code which is
usually defined in the devices electronic hardware, the device
numbers can be any value between 4 and 30. Having set up the
direction of a data transfer of each device and its mode of operation
the ‘controller’ sends out a command to initiate data transfer. When
that data transfer is completed the ‘talker’ sends a command to the
‘controller’ which then sends commands to the bus devices which
disables them as either ‘talkers’ or ‘listeners’.

The serial IEEE port connections.

The six /0 lines of the VIC serial IEEE port are derived from the two
6522 peripheral I/0 chips. The following table shows the derivation of
each line.

VIA No. fine No. Line function
VIA 1 PA1 Serial datain
VIA 2 CB2 Serial data out
VIA1 PAO Serial clock in
VIA 2 CA2 Serial clock out
VIA 1 PA7 Serial ATN out
VIA2 cB1 Serial SRQ in

The output connector and the circuit used to input and outgut these
lines is shown in Figure39. It should be noted that the ‘ATN in’ line is
not implemented and is simply connected to pin 9 of the user port
connector. If ‘ATN in’ is required then the user should connect pin 9 to
one of the unused user port handshake lines and write the
appropriate software to handle an ‘ATN in" input.

Using the Serial IEEE Port.

Whether the IEEE port on the VIC is the simple serial port on the
unexpanded machine or the full implementation using the external
IEEE-488 module the Basic command syntax is identical. The
differences lie in the way the data is transmitted. The commands in
the following synopsis can be used with either mode of IEEE data
transmission, providing that the device or devices communicating
with the VIC over the bus are capable of the selected type of
communications.

226

Opening an |EEE channel.
Basic Syntax: OPEN If, d, sa, “fn"
If — Normal logical file ID (1-255).

d — Device number (4-30). This selects the device to receive this
command sequence. A different device number is allocated to each
device communicating with the VIC via the IEEE bus.

sa — Secondary address (0-31). This code value is used to determine
the operating mode of an intelligent peripheral. By changing the
secondary address the operating characteristics of the device can be
changed, the value used and its operation will be unique to the
addressed device.

“fn” — File name string. The file name field is an extension of the
secondary address and is principally used when communicating with
storage devices such as tape and disk drives. The file name field can
be either a string, or string variables up to 128 characters long, and is
used to specify a data item or a file name. The use of a file name and
the syntax used to construct the string is dependant on the device
addressed.

Function of the OPEN Command

" The OPEN command selects a device that has a value between 4
and 30 and the operating system assumes that the device is an IEEE
device. If no file name or secondary address is specified then nothing
is communicated to the peripheral devices from the VIC ‘controller’.
The operating system takes the variables in the OPEN command and
stores them in the file tables. However, if a file name is specified the
operating system sends a ‘listen attention’ sequence to the device
specified in the OPEN command. The secondary address is also
transmitted with the file name as the hexadecimal or of $F0 and the
secondary address specified in the OPEN command. The VIC
operating system allows up to ten logical files to be opened at any
one time.

Machine Code Entry Points for Serial IEEE.

Set logical, first, and second address ~ — $FFBA
Set file name — $FFBD

Open command routine — S$FFCO

227

‘p0d 3331 DIA @Y} UO SaUI| |0UOD PUB BIBP JO WojoAep\ — L "Bi4

(yueoubls jsow) (1ueoubis 1sE8))
L¥q *C**t g 0 g
T N JIA WOH4 1NO %0019
wibual ayuyaPUl - %
e ————
' H
]
SMSGe Szg e OIA OL NI VLva
] 1) R
PP [S -
asind Bey 103

srioL OIN WOY4 1NO viva

PlIeA BjeQ

228

Receiving Data From an IEEE Channel

Basic Syntax: either INPUT # If, V
or GETH I,V

If — Logical file ID specified for the device in the OPEN command.
\V — Input data stored in variable V or VS$.

The INPUT # command accepts characters from the peripheral
and builds them up into the variable V. This continues until the
delimiter character is received. The delimiter character is a carriage
return (CHR$ 13) and marks the end of the input. The variable string is
built up in the Basic input buffer, this has a maximum length of 88
characters, an input string should therefore not exceed 88 characters
between carriage retumns. The GET # command is used to get a
single character from the bus, no delimiter is needed. The GET
command is also not subject to the 88 character buffer limitation and
can be used to input or output string greater than 88 characters.

IEEE Device Input Sequence and Function.

All INPUT ## and GET # commands go through the same
sequence.
The IEEE initiation routine is first called, this sends a 'Talk Attention’
sequence to the device, followed by the secondary address specified
for that logical file in the OPEN command. At the end of the 'Attention’
sequence the VIC establishes itself in the ‘listener’ mode and waits for
a signal from the addressed device, indicating that a single character
has been received. If this signal is not received within 64ms then an
error is generated and the correct code stored in the status byte,
variable ST. If the signal is received within the timeout period then
control is passed to the IEEE input routine. The |EEE input routine gets
a single character from the bus using the clock line to clock each bit off
the serial data input line. If during the course of inputting data an EOI
signal is received then the IEEE routine will set the EOI status flag, this
indicates that the next byte is the last byte. This calls the termination
‘Untalk’ routine which returns command to the keyboard and sends
an ‘Untalk’ command to the IEEE bus thereby freeing the bus for the
next command. Figure 41 and 42 show the flow of data between the
VIC and the serial IEEE bus devices with the relevent pulse sequence
and timings.

229

Machine Code Entry Points For Serial IEEE input Routines:
Command serial bus device to Talk — $FFB4
Send secondary address after Talk — $FF96
Input byte from serial IEEE port — $FFA5
Command serial bus to Untalk — $FFAB
Set timeout on |IEEE bus — $FFA2

Transmitting Data to an IEEE Channel.

Basic Syntax: PRINT# If, V
If — Logical file ID specified for the device in the OPEN command.
V — Output data stored in variable V or V$.

JEEE Output Sequence and Function.

The PRINT # , command first calls a routine which sends a ‘Listen
Attention’ command to the addressed device on the bus, this sets that
device as a 'listener’. This is followed by the secondary address byte
specified for that logical file in the OPEN command. The VIC expects a
response signal from the listening device within 256 us otherwise a
device not present error is signalled. The IEEE output routine then
transmits the data in the variable bit by bit down the serial output line
together with synchronising clock pulses. The output data is stored in
the Basic buffer prior to transmission, and it is from here that the
output routine accesses each byte. When the last byte of data to be
transmitted is reached the VIC sends an EOQI signal to the listener to
warn the listening device that transmission is about to end. Having
transmitted this last byte the VIC sends an ‘Unlisten’ command to the
bus and restores output to the screen. This frees the bus for the next
operation. Figures 41 and 42 show the flow of data between the VIC
and a serial |IEEE peripheral device, together with the pulse sequences
and timings.

Machine Code Entry Points for Serial IEEE Output Routines

Command serial bus device to Listen — $FFB1
Send secondary address after Listen — $FF93
Output byte to serial IEEE port— $FFA8
Command serial bus to Unlisten — $FFAE

Set timout on |EEE bus — $FFA2

230

Closing an IEEE Channel.
Basic Syntax: CLOSE If
If — Logical file ID specified in OPEN command.

JEEE Named Device Closure.

When an |EEE file which was opened with a file name is closed a
special command sequence is generated. This command sequence
sends the secondary address from the OPEN command ORed with
hexadecimal $EO to the device specified. This allows special file
closure commands to be sent to intelligent peripherals.

Machine Code Entry Point for Serial IEEE Close Routine.
Close named IEEE device — $FFC3

Other |IEEE Commands

There are three special [EEE commands, they are: LOAD, SAVE, and
CMD. The first two are concerned with the transfer of programs
between the VIC and a peripheral device on the |EEE bus. The last
command, CMD, is a special form of the PRINT No., command. All
three commands should be preceded and followed by the OPEN and
CLOSE command specifying the device number to be accessed. The
function and syntax of these three commands is as follows:

Load program from IEEE device.
Basic Syntax: LOAD fn, d, sa

fn — File name of program to be loaded into the VIC memory, may
contain optional commands to the addressed device such as disk
drive number. The file name and optional device directive should be
enclosed in quotes.

d — Device number defined in the OPEN command.
sa — Optional secondary address command.

The first two bytes of data retreived in a LOAD command contain
the starting address of the program. :

231

Save program on |IEEE device.

Basic Syntax: SAVE fn, d, sa

fn — File name of program to be saved on peripheral device. The file
name should be enclosed in quotes and may contain an optional
command to the addressed device eg: disk drive number.

d — Device number defined in the OPEN command.
sa — Optional secondary address command.

The starting address of the program in VIC memory is transmitted
in the first two bytes of data.

The CMD command.
Basic Syntax: CMD If, V

If — Logical file ID specified for the device in the OPEN command.
V — Output data stored in variable V or V$.

The CMD command is virtually identical to the PRINT No.,
command, except that at the end of data transfer the unlisten routine
is not called, thereby leaving the device to be commanded by a CMD
as the primary output device for Basic. PRINT or LIST commands are
then directed to this device rather than to the video screen. The most
frequent use of CMD is in obtaining printed program listings. The
CMD command is terminated by a PRINT No. command being
executed.

Important memory locations used by the VIC serial IEEE port.

$30 — The I/0 status flag

$94 — |EEE buffered character flag
$95 — |EEE buffered character
$97 — Temp for IEEE input

$98 — Pointer to file table

$99 — Input device No.

$9A — Output CMD device

$A3 — Serial bit cont/EQ! flag

$A4 — Cycle counter for serial [/0
$B7 — Length of current file name string
$B8 — Current logical file number

232

TALKER

Dout — high Dout —
Timeout Error Din — low P Din
Device not Present within 256us hl
Cout —> high Cout >
in
L Din - high? «— Di
yes
Cout
Cout -» jow —
Last
byte before yes
‘Untalk’ & ‘Unlisten’?
EOI set Din
e
no
ale yes
no _ Din
yes
out
Cout — low Cou —
Dout
Output data —p
byte
no . Din
yes

233

LISTENER

Din no ait for
Din-> high
Dout
« Dout - low
e |
in
¢ o Cin = high?
Dout
L Dout — high
Cin N Cin = low)
after 256ps VIC is asserting EO}
yes
Dout
- Dout = low 32ps
Dout
< Dout — high
ra |
Cin
no Cin = low?
yes
Din
Input data byte
A
Dout

A

Dout — low

Y
Delay 60us
Dout & Cout - high

Fig. 42 — Flow diagrams of data input and output sequence
in IEEE port communications. 234

$B9 — Current secondary address

$BA — Current device number

$BB — Address of current file name string
$0200 — 88 byte Basic input buffer

$0259 — Logical file number table, 10 bytes
$0263 — Device number table, 10 bytes
$026D — Secondary address table, 10 bytes
$0285 — IEEE timeout flag

System subroutine locations for serial IEEE

$E4A0 — Set data line high

$E4A9 — Set data line low

$E4B2 — Debounce PIA and shift clock to carry
$EE14 — Command serial bus device to talk
$EE17 — Command serial bus device to listen
$EE40 — Output a byte from serial bus

$EEBF — Set to send data

$EECO — Send secondary address after listen
$EEC5 — Release attention after listen

$EECE — Talk second address

$EED3 — Talk attention

$EEE4 — Buffered output to serial bus

$EEF6 — Send untalk command to serial bus
$EF04 — Send unlisten command to serial bus
$EF19 — Input a byte from serial bus

$EF84 — Set clock line high

$EF8D — Set clock line low

$EF96 — Delay 1ms

Vector jump addresses for serial IEEE

$FF93 — Send secondary address after listen
$FF96 — Send secondary address after talk
$FFA2 — Settimeouton IEEE bus

$FFA5 — input byte from serial IEEE port
$FFA8 — Output byte to serial IEEE port

$FFAB — Command serial bus device to untalk
$FFAE — Command serial bus device to unlisten
$FFB1 — Command serial bus device to listen
$FFB4 — Command serial bus device to talk
$FFBA — Set logical, first and second address

235

$FFBD — Set file name
$FFCO — Perform OPEN command
$FFC3 — Perform CLOSE command

236

Appendix # 1

Table of CBM Codes

DEC IMAL HEX ASCII SCREEN BASIC 6502 DEC IMAL
0o 00 @ end-1line BRK 4]
1 01 A ORA(I,X) 1
2 02 B 2
3 03 C 3
4 04 D 4
S5 05 E ORA Z 5
6 06 F ASL Z 6
7 07 G 7
8 08 H PHP 8
9 09 1 ORA # 9

10 0A J ASL A 10
11 0B K 11
12 oC L 12
13 oD car ret M ORA 13
14 OE N ASL 14
15 OF 0 15
16 10 P BPL 16
17 11 cur down Q ORA(I),Y 17
18 12 reverse R 18
19 13 cur home S 19
20 14 delete T 20
21 15 U ORA Z,X 21
22 16 v ASL Z,X 22
23 17 w 23
24 18 X CLC 24
25 19 Y ORA Y 25
26 1A Z 26
27 1B [27
28 1c \ 28
29 1D cur right] ORA X 29
30 1E t ASL X 30
31 1F - 31
32 20 space space space JSR 32
33 21 H . H AND(I,X) 33
34 22 " " " 34
35 23 # # # 35
36 24 $ $ $ BIT 2 36
37 25 % % % AND Z 37
38 26 & & & ROL 2 38
39 27 ' * ' 39
40 28 (((PLP 40
41 29))) AND # 41
42 2A * * * ROL A 42
43 2B + + + 43
44 2C) R R BIT 44
45 2D - - - AND 45
46 2E . . . ROL 46
47 2F / / / 47
48 30] '] '] BMI 48
49 31 1 1 1 AND(I),Y 49

237

DECIMAL HEX ASCII SCREEN BASIC 6502 DECIMAL

S0 32 2 2 2 50
51 33 3 3 3 51
52 34 4 4 4 52
53 35 5 5 5 AND Z,X 53
54 36 6 6 6 ROL Z,X 54
55 37 7 7 7 55
56 38 8 8 8 SEC 56
57 39 9 9 9 AND Y 57
58 3A : : : CLI 58
59 3B H ; ; 59
60 3C 60
61 3D = = = AND X 61
62 3E ROL X 62
63 3F ? ? ? 63
64 40 RTI 64
€5 41 A ,a A EOR(I,X) 65
66 42 B ,b B 66
67 43 C ,C C 67
68 44 D ,d D 68
69 45 E ,e E EOR Z 69
70 46 F , £ F LSR 2 70
71 47 G N3 G 71
72 48 H ,h H PHA 72
73 49 I , 1 b¢ EOR # 73
74 4A J .3 J LSR A 74
75 4B K kK K 75
76 4C L 1 L JMP 76
17 4D M ,m M EOR 77
78 4E N ,n N LSR 78
79 4F (o] ,0 (o] 79
80 50 P P P BVC 80
81 51 Q ® 4 Q EOR(I1),Y 81
82 52 R , T R 82
83 53 S I S 83
84 54 T t, T 84
85 55 U u, U EOR Z,X 85
86 56 v ,V v LSR Z,X 86
87 57 w W w 87
88 58 X)X X CLI 88
89 59 Y Y Y EOR Y 89
90 5A Z | :2 z 90
91 5B 21
92 5C 92
93 5D EOR X 93
94 SE <l LSR X 94
95 SF , 95
96 60 > RTS 96
97 61 ADC(I,X) 97
98 62 98
99 63 99

238

DECIMAL HEX ASCII SCREEN BASIC 6502 DECIMAL

100 64 100
101 65 ADC Z 101
102 66 RCR Z 102
103 67 103
104 68 PLA 104
105 69 . B ADC # 105
106 6A RCR A 106
107 6B 107
108 6C JMP (1) 108
109 6D ADC 109
110 6E ROR 110
111 6F 111
112 70 BVS 112
113 71 ADC(I),Y 113
114 72 114
115 73 115
116 74 116
117 75 ADC Z,X 117
118 76 ROR Z,X 118
119 77 119
120 78 SETI 120
121 79 ADC Y 121
122 7A , 122
123 7B 123
124 7C 124
125 7D ADC X 125
126 7E ROR X 126
127 43 127
128 80 r-0 END 128
129 81 r-A FOR STA(I ,X) 129
130 82 r-B NEXT 130
131 83 r-C DATA 131
132 84 r-D INPUT # STY Z 132
133 85 r-E INPUT STA 2 133
134 86 r-F DIM STX Z 134
135 87 r-G READ 135
136 88 r-H LET DEY 136
137 89 r-1 GOTO 137
138 8A r-J RUN TXA 138
139 8B r-K IF 139
140 8C r-L RESTORE STY 140
141 8D car ret r-M GOSUB STA 141
142 8E r-N RETURN STX 142
143 8F r-0 REM 143
144 90 r-P STOP BCC 144
145 91 cur up r-Q ON STA(I),Y 145
146 92 rvs off r-R WAIT 146
147 93 clear r-S LOAD 147
148 94 insert r-T SAVE STY Z,X 148
149 95 r-U VERIFY STA Z,X 149

239

DECIMAL HEX ASCII N 1

150 96 r-v DEF STX Z,Y 150
151 97 r-W POKE 151
152 98 r-X PRINT # TYA 152
153 99 r-Y PRINT STA Y 153
154 %A r-Z CONT TXS 154
155 9B r- LIST 155
156 oC r-\ CLR 156
157 9D cur left r-] CMD STA X 157
158 9E r-¢ SYS 158
159 9F r- - OPEN 159
160 A0 B CLOSE LDY # 160
161 Al r-! GET LDA(I,X) 161
162 A2 r-" NEW LDX # 162
163 A3 r-# TAB(163
164 A4 r-$ TO LDY Z 164
165 AS r-% FN LDA 2 165
166 A6 r-& SPC (LDX Z 166
167 A7 r-' THEN 167
168 A8 r-(NOT TAY 168
169 AS r-) STEP LDA # 169
170 AA r-* + TAX 170
171 AB r-+ - 171
172 AC r-, * LDY 172
173 AD r-- / LDA 173
174 AE r-. LDX 174
175 AF r-/ AND 175
176 BO r-f OR BCS 176
177 Bl r-1 LDA(I),Y 177
178 B2 r-2 = 178
179 B3 r-3 179
180 B4 r-4 SGN LDY Z,X 180
181 B5 r-5 INT LDA Z,X 181
182 B6 r-6 ABS LDX Z,Y 182
183 B7 r-7 USR 183
184 B8 r-8 FRE cLV 184
185 B9 r-9 POS LDA Y 185
186 BA r-: SQR TSX 186
187 BB ¥-; RND 187
188 BC r- LOG LDY X 188
189 BD r-= EXP LDA X 189
190 BE r- cos LDX Y 190
191 BF r-2 SIN 191
192 co TAN CPY # 192
193 c1 ATN CMP (1), X 193
194 c2 PEEX 194
195 c3 LEN 195
196 c4 STR$ CPY Z 196
197 c5 VAL CcMP Z 197
198 ceé ASC DEC 2 198
199 c7 CHR$ 199

240

DECIMAL HEX ASCII SCREEN _ BASIC 6502 DEC IMAL
200 cs ,h LEFT$ INY 200
201 co ,i RIGHT$ CMP #= 201
202 cA i MID$ DEX 202
203 CB K 203
204 cc ,1 CYP 204
205 CcD ,m cMP 205
206 CE ,n - DEC 206
207 CF ,0 I} 207
208 DO P ‘l" BNE 208
209 D1 ,q CMP(I1),Y 209
210 D2 , T - 210
211 D3 .8 ° 211
212 D4 ,t ® 212
213 D5 ,u 5 CMP Z,X 213
214 D6 v 2 DEC Z,X 214
215 D7 W -3 215
216 D8 X CLD 216
217 D9 VY CMP Y 217
218 DA ,Z 218
219 DB 219
220 DC 220
221 DD CMP X 221
222 DE DEC X 222
223 DF 223
224 EO CPX # 224
225 El SBC(I),X 225
226 E2 226
227 E3 227
228 E4 CPX 2 228
229 E5 SBC 2 229
230 E6 INC Z 230
231 E7 231
232 E8 INX 232
233 E9 vz SBC # 233
234 EA NOP 234
235 EB 235
236 EC CPX 236
237 ED SBC 237
238 EE INC 238
239 EF 239
240 FO BEQ 240
241 F1 SBC(1),Y 241
242 F2 242
243 F3 243
244 F4 244
245 FS SBC Z,X 245
246 Fé INC Z,X 246
247 F7 247
248 F8 SED 248
249 F9 SBC Y 249

241

DECIMAL HEX ASCII SCREEN BASIC 6502 DECIMAL

250 FA _IK] 250
251 FB 251
252 FC 252
253 FD SBC X 253
254 FE INC X 254
255 FF s 255

242

1.0C

92600
94600
24600
AQ0O
AOOR
AQO4
AQO6
ADO7
A008
AQOY
A0QOY
AQO9
AQO9
AQOC
AQOC
AQOC
AOOC
AQOF
AQ10
AQL3
AO13
A0L3
A013
AOLS
AQLSB
A01B
ADLC
AQLE
AOLF
AQLF
AQR21
A023
AO25
A027
A029
AO2B
A02B
AO2B
AO2B
AOZB
AORQE
A031
A034
AO36
AQ39

243

CODE

02
2B
41
c3
c2

cD

20

20
58
ac

A2
BD
9D
CA
10
&0

3A
83
81
E3
16
3C

3F

7B

oB
iF
00

F7

c4
(o)
AQ
AOQ
Al
Al

AQ

A0

E3

A0
03

91
F7
FF

2 A0

Appendix # 2 Wedge Program

L. INE

i ENTRY CODE

i

H

#=$A000

.WOR START
. WOR PANIC
A0, $C3, $C2, $CD i AOCBM

. BYT

; START — SET UP OP SYHTEM

START JSR MYINIT

H

; 60 RESET SYSTEM

; START - SET UP BASIC SYSTEM

i

JER
GLI
JMP

INITYN

INITNV

; INITILIZE VECTORS

; INITILIZE REST

5 INITVYN ; INITILIZE THE VECTORS MY WAY

INITVYN LDX
INITVL LDA

;
ITBGN

ITEND

H

; PANIC — USE THE OLD

PANIC

STA
DEX
BPL.
RTS

#ITEND-ITBGN-1

ITBGN, X
IERROR, X

INITVL

WOR NERROR, NMAIN, CNCHST, LISTER,

BIT
JEBR
JSR
BNE
JER
JMP

D10RAH
UDTIM
STOP
PANIC1
MYREIT
($C002)

BYEBYE, EVALMY

RETURN
s CLR NMI REQ
; CHECK FOR STOP KEY

; RESTORE MY 1/0 SYSTEM
i RETURN TO BASIC

LocC

AO3C
AQ3F
AQ3F
AQ3F
AQ3F
AQ3F
AQ42
AQ45
AO04B
A04B
AQAD
A0SO
AOSR
AOBS

AQGE
ADGE
ADSE
AQDL
AQSH
AODA
AOSBC
AQBE
AOGE
A0LO
AQLR2

ADL2
AQL2
ADL2
AQL2
AD68
AQL?
AOLE
AQLF
AO75
AD76
AO79
ADT7A
AO7C
AQ7D
AOQ7F
AOBO

CODE

ac

20
20
20
20
A9
aD
A9

&0

4D
co
53
AB
53
DA
50
D4
50
cG
4A
De
00

54

A2
Al

A2

Al
Al

41
ar

4c
44

4F

FF

aF

LINE
PANICI JMP
i MYINIT -
i MYREIT -
:
MYINIT JSR
MYREIT JSR
VJSR
JSR
I.DA
STA
i.DA
8STA
RTS
;o DLIST - H
i STARTIN
DLIST
- WOR
. WOR
. WOR
. WOR
LASTEY =@31
. WOR
. WOR

LASTFN =@32

i LIST -~ HO

. BYT

. BYT

. BYT

. BYT

. BYT

. BYT

. BYT

PREND i DO AN EXIT

MASTER SET UP CODE
MASTER RESTORE CODE

RAMTAS ; 60 TEST RAM
MOVOSI i MOVE QS VECTORS
IOINIT

CINT ;G0 INIT SCREEN
#<TIMB ; RESET BREAK VECTOR
CBINV

#>TIMB

CBINV+1

0L.DS DISPATCH LOCATIONS

G VALUE @314

MONTOR -1 i MONTTOR
SOUND -1

SETPLT-1 3 SETPLOT

PLOT-1
7 i LAST STATEMENT
PDL-1 TOKEN VALUE
JOy-1

1 i LAST FUNCTION
TOKEN VALUE

LDE ASCII TOKEN TABLES

‘MACHIN', $C% i MACHINE
‘SOUND /) $A8 ; SOUNDC

‘SETPLO’, D4 SETPLOT

‘PLO, D4 i PLOT X, ¥

‘PD’, $CC ;o PDL

'S0, $D9 i JOY

$00 JEND OF LIST TARLE

244

L.oc

AOB1
A081
A081
A0B1
A081
AQ81
AQB4
AOBG
A0B6
A0B%
AOBB
AO8D
AOBF
AOBF
A091
A093
A0S
097
AD97
A097
A0?7
AO99
AO9B
AO9D
AO9D
AOTE
AOAL
AOA3
AOAS
AOA7
AOA7
ADAA
AQAC
AOAE
AOAF
AOB1
AOR1
AOB3
AQBS
AOB6
AOB7
AOBA
AOBB
AOBD
AOBD
AOBD
AOBD
AOBF
AOC Y
AOC2
AOC4
AOC?
AOC7
AOCB
AOCT

245

CODE

20
A0

BY?
FO
ce
FO

ce
0
ce
BO

84
A2
8é

38
FD
FO

FO

BD
FO
30
ES
DO

Eb6
AL
A9
ce
B9
ES
DO

Ab
AS
18
&9
9D

c8
E8
BY

7C CS
05

FB Of
57
22
47

41
40
5B
3C

B1
00
0B

62 A0
13
80
16
62 A0
03
Fé&
op
B1
FB Ol

EO

B1
oR

cc
FB 01

FB 01

LINE

NEW CRUNCH ROUTINE

COME TO HERE ON INDIRECT
TOKEN CHAR LIST MUST BE <255 CHARS

COMMAND

CNCHST

LOOPOT

JSR
LDY

LDA
BEQ
CMP
BEG

CMP
BCC
CMP
BCS

i TOKENIZE

LOOPIN

L.OOPND

CONTLP

NEX1

|TY
1.DX
STX

SEC
SBC
BEQ
CMP
BEG

LDA
BEGQ
BMI
INX
BNE

INC
LDY

BUFFER LINE MUST BE <255 CHARS

NCRNCH
#5

BUF-S.Y
CNCHRT
#en
LOOPQT

#'A
L.OOPBK
#C
LOOPBK

i G0 TOKENIZE ALL OLD SYMBOLS
;BET UP TO TOKENIZE ALL NEW
SYMBOLS
i GET DATA BYTE
; IF ZERD THEN EXIT-RETURN
; CHECK FOR QUOTE CASE
; YES. . . 60TO QUOTE LOOP

;CHECK IF IN ALPHA RANGE. .

iNO. . . BELOW
A S
i NO. . . ABOVE

IF IN TABLES

TEMP
#0
COUNT

LIST. X
NEXT
#128
DONE

LIST, X
LOOPBK
CONTLP
LOOPNO

COUNT
TEMP

_BYT $A9

INY

. LDA

i DONE

DONE

LOorPC

LNX
BNE

BUF-5,Y

LOOPIN

;HOLD OLD .Y VALUE

i FIND TOKEN
i A MATCHED CHAR
A MATCHED TOKEN

iNO MATCH LOOP

;AT END OF LIST, DISCARD CHAR

;AT END DF TOKEN, GO COMPARE
TO NEXT

3 JMP

5 INC TOKEN. COUNT
JPOINT TO BEGINNING OF CHECK
;SKIP 1 (LDA #)

i GET NEXT CHAR

PNEXT IN LIST

- STORE TOKEN AND COMPACT

LDX
I.DA
CLC
ADC
STA

INY
INX
i.DA

TEMP
COUNT

#@314
BUF -5, X

BUF-5, Y

s GET OLD POSISTION
i GET TOKEN VALUE

i LAST BASIC TOKEN+VALUE
i PUT INTO POSISTION

; CRUNCH COMMAND STRING DOWN

L.O0C

AQOCC
AOCF
AOD1
AOD3
AOD3
AOD4
AODE
AOD&
AODS
AOD&
AOD7
AODA
AODC
AODE
AQEQD
AQER2
AQE2

AOE3
AOE3
AQE3
AOE3
AOE4
ACE6
AQESB
ACEA
ACEC
AQEE
AOFO
AOF 1
AOF 1
AOF 1
AOF §
AQF2
AOF 4
AOF S
AOF7
AOF9
AOF9
AOFA
AOFC
AOFC
AOFD
S8 100
ALOR
ALOA
A104
ALOS
ALOS
ALOA
ALOD
ALOF
ALOF
ALYy
ALL2
A1L3

CODE

9D
Do
A4

c8
Do

c8
B?

ce
Do
FO

&0

08
ce
FO
24
30
ce

28

38
£9
AA
84
AO

FB
Fé
B1

BO

FB
0&6
22
Fé&
F1

FF
2A
OF
26

22

CB

b2
05
D2
Fs

EF

1A

01

01

> AQ

AQ

Fr

Co

&7

LINE

STA
BNE
LDY

LOOPBK INY
BNE

B

BUF~5, X

LOaPC
TEMP

LOOPOT

i QUOTE LOOP

LOOPQT INY
LDA
BEQ
CMP
BNE
BEG

CNCHRT RTS

i LISTER -
H VECTOR

LISTER PHP
cMP
BEQ
BIT
BMI
CMP
BCC
PLP

i

; PRINT TOKEN IN LIST

SEC
SBC
TAX
8TY
L.DY

RESLP1 DEX
BEQ

RESLP2 INY
L.DA
BPL
BMI

RESPRT INY
1.DA
BMI
JBR
BNE

RESEXT JMP

LEXIT PLP
JMP

BUF-3, Y

CNCHRT
#/n

LOOPQT
LOOPBK

JUNTILL WE HIT ENDING ZERO

i GET POSISTION, AND CONTINUE

i IF ZERO THEN AT END OF LINE

i MASTER EXIT

NEW LIST ROUTINE
QPLOP TO THIS ROUTINE

#2055

LEXIT
DORES
LEXIT
#@314
LEXIT

#@313

LETPNT

#2955

RESPRT

LIST, Y
RESLP2
RESLP1

LIST, Y
RESEXT
BSOUT

RESPRT

PRIT4

NQPLOP

i SAVE FOR EX1T
3 IF PT THEN EXIT

5 IF QUOTES ON THEN EXIN

5 1F MOT IN RANGE THEN EXIT

i TDSS STACK WILL USE DIf-FERENT
RETURN

i GET INDEX
i SAVE | Y

i LOOP UNTILL TOKEN FOUND
i FOUND. . PRINT 17

5 LOOF UNTILIL. NEXT IN LIST
FOUND

i END OF TOWKEN

i PRINT OUT TOKEN-LIST
i ALL. DUNFE
s OUTPUT THE CHAR

; €0 BACK TO BABIC

i RESTORE STATUS
i G0 BACK 10 NORMAL t.181

246

LOC

Alib
All6
Alls
Al119
A11B
A11D
ALLF
Al21
AL24
AL27
A127
A129
Al2A
AL2B
Al12E
Al2F
Al132
AL33
A 136
ALDG
AL3?

8136
AL
ALAG
AlLA3
LAY
NIAT
NLAR
ALAR
AL4D
M LAE
ALAE
ALGR
ALLD
AL1D6
;I
ATUA
ATBA
ALGC
10K
AL4LD
ALLR

247

CODE

20
ce
{0
ce
BO
20
4ac

£9
0A
AB
B?
48
BY?
48
ac

A
85
20
ce
20
ce

E?
on
A
37
48
B?
44
AC

A
Do
Cé

4¢

73
cC
19
DO
15

AE

CB

57

Sé

79
E7

0Q
On
73
o1¢]
12
i
oF
CR

7O
02
70

8é

00

Al
c7

AO

AQ

[919]

00

v

Q0

AD

AT YS

OG

Ct

LINE

i BYEBYE -

BYEBYE JSR
CMP
BCC
CMP
BCS
JSR
JMP
BYEGO SBC
ASL
TAY
L.DA
PHA
I.DA
PHA
JMP
BYERTS JSR
JMP

CYALMY 1LDA
5TA
JSR
CMP
BCC
CMP
Bes
$BC
ASL
ray
1.DA
PHA
1.DA
PHA
JMP

EVaLLY

1.DA

EVALRT

THIS IS THE NEW COMMAND DISPATCHER

CHRGET
#@314
BYERTS
#LASTST+1
BYERTS
BYEGO
NEWSTT i RETURN
#@313
A P MULT #2

; GET THE NEXT CHARACTER
; CHECK TO SEE IF IN DUR LIST
i NO. . . LEAVE
; CHECK TO SEE IF BEYOND
i YES. . . LEAVE

i GUB @314

; 60TO THE ROUTINE

DLIST+1,Y

DLIST.Y

CHRGET

CHRGOT
NEGONE 1

#0O

VALTYP
CHROET
HLASTET 1
EVALLY
#1LASTFN+1
EVALLY PNOL L
#@313 P BUB @314
A i MUL %2

iNOLC L

DLABT+L, Y
DILYST, Y
CHREET
TXTPTR

EVALRT
TXTPTRA-1

i BACK UP

EC OTX1PTR

NEYAL

i RESTORE

i BAME DISPATCH AS GONE

POINTERS

; COPY FROM EVAL

;IS 17 IN RANGE?

TXTPTR

Loc

Al65
A16D
Al65
A167
AlS6A
Al6D
AL6E
AL&F
AL172
AL7S
AL76
Al78
ALT7A
AL7D
AL7F
A1B1
A183
A18T
A185
A188
AL1B8
A189
A18C
A18F
ALF0
A192

CODE

A2
8E
20
AB
8A
AE
D
E8
EOQ
BO
20
co
FO
co
FO

ac

CA
BD
D
CA
10
&0

(o]0]
(o]¢]
QE

00
o1

06
OB
73
29
07
2C
E2

o8

o1

0A

F7

oL
D7

o1
01

00

01
90

LINE

i SOUND(X1, X2, X3, X4, AM)

SOUND
SLOOP

SDERR
SMOVR
SMOVL.

LDX
8TX
JSR
TAY
TXA
i-DX
STA
INX
CPX
BCS
JSR
CPY
BEQ
CPY
BEQ

JMP

DEX
L.DA
8TA
neEX
pPL
RTE

#0 i INDEX
FBUFFR i IN A TEMP
GETBYT
i SAVE CHREODT
FBUFFR 3 COUNT
FBUFFR+1, X ; INDEX INTO TEMP AREA
#6 3 CHECK FOR 1700 MANY FRAMS
SDERR i YES. . . TOD MANY
CHRGET P GET NEXT CHAR
#7) i AT END?. .
SMOVR ;s YES. . EXIT TO MOVER
#7, i MUST HAVE GOTTEN A SEPERATOR
SLOOP s YES. .. CONTINUE
SNERR 5 SYNTAX ERROR
FBUFFR+4, X i MOVE TO VIC REGS

VICREG+10, X

SMOVL

248

L.0oC

A193
A193
A193
AL94
A198
Al19H
A19D
A1AO
AlAl
AlA4
AlA4
AlA4
AlA4
Al1A7
Al1AB
AlAA
AL1AD
A1BO
A1B3
ALBS
AIBS
ALB7
ALBA
A1BC
AL1BF
&8100
ALCO
A1C3
AlLCS
ALCB
ALCS
AICY
ALCB
AlCC
ALCE
ALDO
ALD?
AID3
AlLD4
AlID6
ALDB
A1DY
ALDA
ALDC
ALDD
ALEQ
A1EO
ATED
AJEO
ATEG
ALED
ALEQ
ALEO
AIED
ATEO

249

CODE

20
EC
0
4Cc
BD
A8
4c

20
78
AZ
8E
AC
cc
Do

A2
8E
A2
8E
58

AD
Cp
DO

48
29
an
co
F0
0?2
AB
68
27
o
k18]
bd
49
faXe]
4C

9E

-
2

03
48
[o]=]

A2

FE

7F
22
20
20
Feg

FF
22
F7
20

1F
1F
Fe
1C
=1¢]

o2
10

20
20

ar

AZ

D7

D2

?0

D3

D7

f1
71
91

1

21
@1

03

LINE

i

PDL(X) OR

PDL JSR

cPX
BCC

PDLERR JMP

i
i

i

I.DA
TAY
\JMP

PDL X ; X=0 OR 1

GETBYT

#2

*+D

FCERR
VICREG+8, X

SNGFLT

i ONLY
i DKAY

O OR 1

i ILLEGAL QUANITITY

; MAKE

IT A NUMBER

JOY (X) XMUST BE A BYI1E VALUE

Joy JSR
REDJOY SEI

L.DX
8TX

JOYLP1 LDY

CPY
BNE

DX
87X
1.DX
8TX
CLY

JOYLPZ2 LDA

CMP
BNE

PHA
AND
1.8R
CPY
BCC
ORA

JOYLP3 TAY

GRPNT
TEMP)

Pi.A
AND
CMP
Tya

GETBYT

#$7F
D2DDRB
D20RB
D20RB
JOYLPL

HEFF
D2DDRB
HEF7
D20RB

D10ORA
D10RA
JOYLP2

#700011100
A

#4680
JOYLP3
#7%00010000

#7%00100000
#7.00100000

ROR A

EOR
TAY
JMp
END
LIB
=&
1

TEMP2 =$F(

GR

SCRN =$10

COLLEN =14&C

i

i

HI REG PL

#7100011011

SNGFLLT

PLOT

00

aT LoeIc

; CANNOT INTERRUPT

i GET

Javy3

; RESET DDRB

;s RESTORE STOP KEY CHECK

;i REGTORE IRG’'S

s GET

» MAGK
i MOVE
5 CHECK

i BT

i MOVE

5 MASK
3 CHIECK

5 MOVE
5 FLIP

i MAKE

Javyo, 1,2 & BUTTON

OF JOYSs
DOWN ONE
FOR A JOYS

TURN ON
TO TEMP

ON DUITON
FOR EXISTANCE

S0 7=BUTTON 3210:J0Y&
S0 POS LOGIC

IT A NUMDBER

1.0C

AL1EO
A1EQ
AlE2
AlE4
A1ES
ALESB
AlEA
ALEC
ALEE
ALEF
ALFO
AlF1
AlIF3
ALFS
AlFb
ALFB
ALIF9
A1FB
ALFD
ALFD
ALFE
A200
A201
A202
A204
AR06

A208
A20A
A20D
AR2LO
A2LE
A214
A7
AZLY
AZLC
A2LE
AL2)
AR21
AR23
APRY

AR35
A237

CODE

A2
AO
18
20
A9
85
86
8A
AB
48
A2
91
18
&9
c8
Do
Eb6

CA
DO
68
18
&9
c9
DO

A
8D
AD
29
09
8D
A9
2D
09
8D

A2
AO
AD

9
97
cy
Do

AQ
80
A%
85
AL
Al

00
10

99
1E
FE
FD

13
FD

0A

02
FE

F3

(03]
oB
Eg

-

15
03

2
a0
13
o2
FO
05
oc
0%

O
00
8&

00
00

10
FE
0G
FD

OF

FF

70

KAy

K0

90

54y

(024

Db

?7

LINE

SETPLT

SCRNL.

SCRNM

0K

SETCOL

CL.Oop

1.DX
i.Dy
CLe
JSR
L.DA
STA
STX
TXA
TAY
PHA
LDX
8TA
CLC
ADC
INY
BNE
INC

DEX
BNE
PLA
CILC
ADC
oy
BNE

L DA
3TA
I_DA
AND
ORA
STA
i.DA
AND
ORA
STA

I.DX
1.DY
1.DA

H5TA
STA
INY
BNE

1.DA
STA
1.DA
8TA
TAY
1L.DX

#0
#%$10

MEMTOP
#$1E
GRPNT+1
GRPNT

19
(GRPNT)Y

#10

oK
GRPNT+1

SCRNM

#1
#11
SCRNL

RELD
VICREG+3
VICREG+2
#$80
#$13
VICREG+2
#$H0
VICREG+DH
#$0C
VICREG+D

#2
#0
Cco.or

$9400, Y
$9700, Y

cLoor
#4610
GRPNT+1
#0O
GRPNT

#14

s MOVE TOP OF MEMORY BELOW MI RESG

; SCREEN RAM WILL BE AT $1E00

i

SET UP SCREEN SO ALL CHARACTERS
START WITH CHARACTER O
CHARACTER/POINTER
19 CHARACTERS PER L.INE

i PUT THE CHARACTER POINTER

s SAVE "BASE"

GET BASE CHAR

ALL. 190 CHARACTURS UP YETY

SET VIC FOR 1

GET CURENT €O
KEEP THIS BRIV
OR IT WITH 19

O ROWG

L UMNS

COLUME

MAKE SURE KATAKANA 1S CFF
PUT VIC IN HI-REG AT $1000

SCET VIC CHAR

i 14 PAGES

ADRS TO

$1000

250

LOC

A23C
A23C
A23E
A23F
A241
A243
A244
AR246

AR47
A247
A24A
A24C
AR4E
AZH0
AZ50
AR52
A255
ARS8
A25A
AZSC
ARGE
ARGE
A26O
AZ60
AR6R
A263
ARbL4
AZLS
ARbS
A2LT7
ARGLA
A26C
ARGLF
A271
A271
ART73
A279
A276
A279
A271
A27D
AR7F

A280
ARB1
A282
A283
ARB4
AR85
A28
A28B7

251

CODE

91
c8
Do
E6
CA
Do
&0

20
EO
0
AZ

86
20
20
E0
0
62

84

AL
4a
48
44
0A
AA
BD
85
BD
85

AD
29
AA
BD
A4
11
L2t
60

80
40
20
10
o8
04
o
01

FD

FB
FE

Fé&

PE
?8
oz
97

FB
FD
9F

88
FD
89
FE

FB
07

80
FC
FD
FD

CLRIT
STA
INY
BNE
INC
DEX
BNE
RTS

PL.OT
JSR
CPX
BCC
DX
DTAOK
65TX
JSR
JSR
CPX
Beo
1.DX
Y ISOK
H5TX

L.DA
I.SR
LSR
I.SR
ASL
rax
LDA
STA
1.DA
STA

1. DA
AND
TAX
LDA
LDY
ORA
STA
RTS

(GRPNT)Y

CLRIT
GRPNT +1

CLRIT

GETBYT
#152
DTAOK
#151

TEMP1
CHKCOM
GETBYT
#160
YI180K
#1509

TEMP2

TEMP 1
A

A
A
A

GRTBLE, X
GRPNT
GRTBLE+1, X
GRPNT+1

TEMP L
#7

XBITS, X
TEMP2
(GRPNT)Y
(GRPNT)Y

3 6CT X VALUE
; DIVIDE BY 8
i TO GET TABLE INDEX

i MAKE IT AN ADDRESS INDEX

5 GET LD BYT OF COLUMN POIMTER
s POINT INDIRECT HERE

3 GFT THE BIT TO SET

3 GET BIT FROM TABLE
i GET ROW INDEX

3 ST THE BIT

i DISPLAY 1T

XBITS BYT %80, $40, 520, $10, $08, $04, %02, $01

LOC

A288
A288
A288
A288
A288
A288
AZ88
A288
A288
AR88
A288
AZ288
AZB8
A288
A288
A288
A288
A2B8
A288

A2B8
A2BA
A28C
ARBE
A290
AR92
A294
A6
A298
ARTA
A29C
ARFE
A2A0
A2AZ2
A2A4
A2AL
A2AB
AZAA
A2AC

CODE

00
AQ
40
EO
80
20
co
60
00
A0
40
EO
80
20
co
60
0o
AQ
40

10
10
11
11
12
13
13
14
i5
15
16
16
17
18
18
19
1A
1A
1B

L.INE

COLO=GRSCRN

COL 1=COLO+COLLEN
COL2=COL1+COLLEN
COL3=COtL.2+COLLEN
COL4=COL3+COLLEN
COL5=COL4+COLLEN
COL.&6=COLS+COLLEN
COL7=COL&+COLLEN
COLB8=COL7+COLLEN
COL9=COL8+COLLEN
COIL10=COL9+COLLEN
COL.11=COL10+COLLEN
COL12=COL11+COLLEN
COL13=COL12+COLLEN
COL14=COL13+COLLEN
COL15=COL.14+COLLEN
C0OLL16=C0OL15+COLLEN
COL17=COL16+COLLEN
COL18=COL17+COLLEN

GRTBLE . WOR COLO
. WOR COL-1
. WOR COL2
.WOR COL3
. WOR COL4
. WOR COL.S
. WOR COL&
. WOR COL7
.WOR COLSB
. WOR €OL9
.WOR COL1O
. WOR COL11
.WOR COLL2
. WOR COL.L3
.WOR COL.14
. WOR COL.1D
. WOR COL16
.WOR COL17
.WOR COL18

262

Appendix # 3
Instruction Set — Hex and Timing

6502

#

Mo m ~ - ~m o ~ e ~|- - -
>
ejeen~ - ~ -~ 3 e~ T |- — -
0
aq
a e m® 2 5] [ag%] 5] YN
<13 288 a a el 2 28 8 2lE g g
m g |V R o ~fci i o1 ~
i
m cloaw R ~a cifcrm o -
M o |l oo oS00 @ s K] [o
CRECKN [SR2) = i < o} 2
WH# NN o~ RSN L] 1B R i~ .
[
m g mn) ~ o e i ~on ~lm e ~ e ~ P
Blalwnyw < v [0 »v S nlese v ol © "o e
O lwa O ~ cmojO T m <lga= O Pl S i L ExE
g Y N]) o ~ o~ M M | ~ I
w = B) < < < T | O T L MmO Tl T O T Kol I} - -
o
o]
(ST A = R R O Q0 0K [~ 2] OoQlmL M =] [K5 o
4l cflwco & O@mo|0 T @ s axT O 5% a 228
I - - |-
W o ~N o~ (a8
Q
S| < < <«
o o - ~l 2
ol s - SN] o - - Ol H [| o
o]
-
m c ~ NN R NN o T e eyl o cif e ey oy
=
o oRIRR 5= o= < Q@0 00 ox|® @ ©
o W HA|wn o [Ses) w o m T OO N R MAMM%Q
o5 &Ala JI8AQl A = RiA A -
Q
SloaaunoRnadxonlaln>axx|0x>eE0 X > XA L] L A OO XXX L n
§lozunuvourmEzalu>>adjadsanianmmo= 2z AN M| Traa0|on b mne R EE Q] n X x>
M cecmnlonmmomalmanroolvooLU[AQARA|HHRD B ARSI 2Z0 S nunfuwn B |RBRE RS

253

PROCESSOR

ABS. Y (IND. X) (IND) Y Z.PAGE,X | RELATIVE |INDIRECT | 2.PAGE,Y | STATUS CODES
opn#opn#opn#opn#opn#opn#opn#nvsolzc
79| 4| 3|61} 6 |2 | 71| 5|2 |75 {4 |2 s .o
394 3]21| 6|2 {31|5{2 (354 |2 . .
6 |6 |2 . .
902 |2
BO |2 |2
FO |2 |2
L]
302 |2
po|2 |2
0|2 {2
50 { 2 2
701 2 2
D9} 4| 3|cr{ 6|2 Ip1| 5/2 |D5[4 |2
L LR
L] .e
*» .o
D6 | 6 2 . .
L] .
. .
591 4| 3|41} 6{2 | 5I|] 5|2 |55(4 |2 . .
F6 | 6 2))
6c| 513 .
Bo| 4| 3| arl 6|2 | B1| 5|2 |BS|4 | 2 . .
BE| 4 3 B6 412 {e .
B4 | 4 2 . .
561 6 2 o
19 4| 3/o1f 6|2 |11 | 5| 2 115| 4| 2 . .
L] .
o e 909
36|61 2 . .o
76| 6 2 . o
s e se0 00
Fo| 4| 3jer{e6 |2 |F1{5 | 2|F5)4]| 2 .o .e
99 5| 3[81|6 {2 |91f6 | 2|95 4] 2
96 | 4 2
94| 4| 2
. .
o o
. .
. .
L4 L)

254

Appendix Z 4 Hex-Dec

sce j4°14 €62 (414 152 062 6v2 124 Lve 144 sve yve £ve [(A%4 1ve ove d
6£2 8€2 Le? 9€2 SeQC vee €£€T 2ET €2 0ee 622 82Z¢ L22 922 sce vee a
€ee 22¢ 122 022 612 812 LIe 912 s1ie viec €12 [4%4 112 012 602 802 a
L02 902 s02 ¥02 £02 202 102 002 661 861 Le6l 961 S6t 61 €61 261 o]
6T 061 681 881 L8T 981 S8T1 ¥81 €81 81 181 081 6L1 8LI LL1 :TA : 4
SLT VLY ELT oLt Lt oLt 691 891 L91 991 S99t vot €91 291 191 091 v
651 8ST1 LST 9¢T SST 1418 £ST 2st IST 0ST 6v1 -3 40 LYT 1 0 Svl 444 6
£vI (444 vt ovt 6etl 8€1 LeT 9ET SET vET €ET 2eT IeT 0€T 621 821 8
L2T 921 g2t ver €21 221 et ozt 611 811 LIY 911 SIT 1491 €1T (499 L
T11 o1t 60T 80T LOT 9201 SOt vot €01 201 101 001 66 86 L6 96 9
S6 v6 €6 26 16 06 68 88 L8 98 <8 i4:1 £8 z8 18 08 S
6L 8L LL 9L SL vL €L L 173 oL 69 89 L9 99 S9 v9 14
€9 29 19 09 6S 8S LS 9¢s SS 144 €S 2s 1< oS 514 8y €
LY £i4 14 144 534 (44 184 ov 6€ 8¢ LE 9€ SE ve €€ (4 4
1€ o€ 62 82 L2 92 14 144 %4 (44 12 0z 6T 8T LI 91 T
ST vl €1 21 It o1 6 8 L 9 S v € (4 T 0 o}
E k! a o] 2| v 6 8 L 9 S 4 € (4 T V] X3H

14Vl NOISHIANOD TVHIDIAVXIH

255

ST 4 ove 4 or8 ‘s q ovy ‘19 E{ ovo‘ese 4 or9‘8zL ST 4
4 1 | vee a p8S g q bre ‘LS a $0S'LT6 1 ¥90°‘089 ' ¥1 ¢
€1 a 802 a 82c‘¢c a 8vz es a 896 ‘158 a 88t ‘19 1 a
43 b} Z6T b ZL0'E b} ZST'6F o] ZEV‘98L 2 zI6‘z8¢‘21 2
11 q 9T d 918‘2 g 9g0 sy | 968 ‘02L | 9EE‘VES TT g
o1 A 091 \ 095 ‘e v 096'0b v 09€ ‘sc9 A o9L‘s8y ‘01 v
6 6 (34 6 vog‘e 6 ¥98‘9¢ 6 $28 ‘685 6 8T LEV 6 6
8 8 821 8 8%0°2 8 89L°2¢ 8 882 °'v2S 8 809'88¢ ‘8 8
L L (A4 L z6L'T L zL9°'82 L esLissy L Z€0‘0pE‘L L
9 9 96 9 9€g ‘T 9 9Ls‘ve 9 91z‘cee 9 9cr ‘1629 9
[S 08 S 082°1 S 08% ' 02 S 089°L2¢ [088°'z¥Z ¢ [+
v 12 ¥9 12 ¥20°‘T 14 ¥8€ ‘9T v v ‘292 12 vOE ‘H61 'Y v
€ € 8% € 89L € 88221 € 809°961 € 8ZLSYT‘E €
4 4 z€ 4 z18 z z61‘s 4 zLo‘1et z ZST‘L60°2 4
T T 91 T 982 1 960 1 9€5‘s9 1 925 ‘80T 1
0 0 0 0 0 0 0 0 0
| oda XaH | od3a XaH o3a _ XaH o3a _‘xam o3a _ XZH fok 4§ _ X3H

256

Appendix % 5

Circuit Diagrams

o =
5y N ; CR/W LInRYoP 2.

m2s JAZH L A27 | UEIO CO
224 $2.2h 220 [6502A

L g ot

SO0

eV
-]
fE 75> BAL

>}
I
<
1>
=|o)

R — v

w3
pe=trd o

re2 L CchW

uce
_ana B
74504

Circuit 1

257

it uo9

a

|

T

Y P

F2te T
co

7415133

CAZ
ING1a8

JOT Y

1z

BDE- 607 a5
VAD - VAI3 ‘C.D
CEN B
YR/W B
" ez 3
| uez |
| N
: | Circuit 1
! !
\= M302 4

VIDEO/AUDIO PORT P4

g;

ROLLER PORT
P

CONT!

268

259

Circuit 2

P3

SERIAL PORT

ues ¢
SERIAL _CLA QuT 3 4 Fea 4
Sv
' 7406 1K
4 45V
RESTORE] 3 uBa
KEY —12 FBS
1 3
AOW & = 1|3 406 PA’
FROW | ®2 sy
RO -2 ey _ sEmaLSRA N |y
7.
3 el us4
W 1 F
N2 Blo
r
2 |y
Z U
) 10
P 9
LS 8
5 ¢
7 2
SERIAL DATA OUT
5V
Al
on
c
I L0 I
b 9 C MOTOR
CAZ|
2. 2py 50
En molaSERIAL CLW W l—_z_‘
© 5t {! AW 3
4 SON @ 4
|3 0V :
oV 2
i d \TE P b
WITCH T |~
onrf2 AL ATy out | [SERAL] |2 [*
RSSO a9
CA 37, 10
AT %) | m <l
e N S vy ol
(<] 13 8
I F
[H ol
1758 % J [
RV v " 0
RES B
™
Jov @ ™ o
JOY 1§ T (<Y1} "
Jov 2z N
LITE PEN B N
\
12

Circuit 2

CONM
Nz
SWi ¢
Ji
POWER
JACKH
LAl

ACAY

= CDP-LDT

.39V UNREG 3
* o0 : 5
T ¢ &
Tev [cos— &
%x to
2 \
-5 <
CASS FEAD 52| & 2
CASS SWITCH| ¢
T a—
I LI
D> .
*555 ucs ag s
502 "F‘c??‘ SCR'Q@ okl e Aeg <l
Fg e 3 Bng B [4a HE
626 BLK2 == 4{ n
g2 ; > BLns A % t%
CAY Zlg 3 s A Iy m
AR | 5 BLRE 3 b
- LI_‘ kil MM S i M
V&S 3 N
8 7405138 Az 4
- we—, ¥
uce N.Q—20
CAS & 3 1t ucz ?
caw 4%, Fh 2 couon 2
CAR_Sicz8 74L504 I/03 1
CARZ c . [_L_.ED T .
CAIl 2im & 1 _17__‘052
- |7 u
calo V|, T - e -
= 4 use 3 b 9
8 A9 4RI4 Y "
= oon3 Lan|FES W] LMSSS ik L v
7415138 2| usa RES
el ou
—Tpen 406
<o les| coutae
T4 71 Lenp
I T —T

260

Circuit 3

R2
W ucz
4S04
ca [
A %)
i 1t
VAD -VAIS 8 B o 8 9
= NCC V83 veC ¥SSlg [WeC e |
[[£3) 5
A —Eine 21 A8 a0 ey
[VAS 4 4 . -
[Vas U e e EH -
w5y [VAE 214 2114 Yo% 1| ues -
(VAL 1
VAT 1 T — "
Az R 16 ! -]
1 &2 16 - 1
VA9 | é?w ﬁ?ﬂ - A‘?N -
= []
au8] " 288 588
d n[izig4 [T
NDB-VOI!
| jvoe 3
\D9 ©
YDIO 2
A Ivii]
®5¢2
(BDt
51
807,
BO3
B04
805
BD6
607
5y
| VA1 6le a|e —
- 4 MY 7y
D}_ﬁ_ﬁ l 3 RAMz
z W_E%
1
Bkl 10
0
7
VALD
41538
AY 1
L2oS08-Co7
E>8Re-er7
BLAY

261

Circuit 3

. .
(a1} cq‘q ¢ 1'2‘42 5IV 9{;3
m — =1 1
18 2 1 9 e 4 = 2
174 \gs NCC V5slg [V » 8frg
—jae ap AR - —H
-1] — - S
-1] 1] £ 3
3] ws B | wes H] 3| 5k 2 | ¥5%
. T 11 yes] 2 3
— | 2vap4— | avia | 214 [
3]] 1 23]
- — - 22
[1A a0 - 12
| Bean[anne ian Hae
fiefiz]ie] 11 i2fi2)g] o8 2
St
D
,%_Da :s
:>E4 %
faan
[CD6 16
C 17!

0|
<

Ye5

262

APPENDIX 6
COMMANDS USED BY VIC MACHINE CODE MONITOR
All commands are displayed in BOLD TYPE

simple assembler

.a 2000 a9 12 ida No. $12

.A 2002 9D 00 80 STA $8000,X

.A 2005 DEX GARBAGE

In the above example the user started assembly at 2000 hex. The
first instruction was load a register with immediate 12 hex. In the
second line the user did not need to type the A and address. The
simple assembler retyped the last entered line and prompts with the
next address. To exit the assembler type a return after the address
prompt. Syntax is the same as the disassembler output. A *:’ can be
use to terminate a line.

disassembler
.d 2000

., 2000 A9 12 LDA No. $12
., 2002 9D 00 80 STA $8000,X
., 2006 AA TAX

disassembles to the end of memory starting at 1000 hex. The three
bytes following the address may be modified. Use the CRSR keys to
move to and modify the bytes. Hit return and the bytes in memory
will be changed. Monitor will then disassemble that line again.

.d 2000 3000

disassembles from 2000 to 3000.

fill memory
f 1000 1100 ff
fills the memory from 1000 hex to 1100 hex with the byte ff hex.

go run

9

go to the address in the pc register display and begin run code. Al
the registers will be replaced with the displayed values.

.g 1000

go to address 1000 hex and begin running code.

hunt memory
.h c000 d000 ‘read

hunt through memory from cO00 hex to dOOO hex for the ASCII string
read and print the address where it is found. A maximum of 32
characters may be used.

263

.h c000 d000 20 d2 ff

hunt memory from c000 hex to d000 hex for the sequence of bytes
20 d2 ff and print the address. A maximum of 32 bytes may be used.
Hunt can be stopped with the stop key.

integerate memory
.i f000

. fO00 54 4f 4f 20 4d 41 4e 59 too many
./ FOO8 20 46 49 4C 45 D3 46 49 FILESFI

displays hex and ascii until the end of memory.
.i f000 080
displays hex and ascii from f000 hex to f080 hex.

load from tape
A

load any program from cassette No. 1.

J “ram test”

load from cassette No. 1 the program NAMED RAM TEST

1 “ram test’” ,02

load from cassette No. 2 the programme NAMED RAM TEST
beware load with a file name breaks the irq saved by the monitor. Do

not use go command after load or save. Exit to basic and re-enter
monitor.

memory display
.m 0000 0080

.» 0000 00 O1 02 03 04 0b 06 07
.- 0008 08 09 OA OB OC OD OE OF

display memory from 0000 hex to 0080 hex. The bytes following the
address may be modified by editing and then typing a return.

new locater
.n 7000 77¢f 1000 0400 8000
.n 7000 77¢f 1000 0400 8000 W

relocates machine code from 7000 hex to 77ff hex to a new location
at 1000 hexf. New locater fixes all 3 byte instructions in the range
0400 hex to 8000 hex. The ‘W' option will relocate word tables only.
New locater will not move instructions of 00. Transfer the tables first
then zero tables in the form copy. New locater stops and
disassembles on a bad op code.

264

register display
r

pcC Sr ac xr yr sp

., 0000 01 02 03 04 0b

displays the register values saved when monitor was entered. The
values may be changed with the edit followed by a return.

use this instruction to set up the pc value before single stepping
with,

save to tape

.s “‘program name”’ ,01 ,0800 ,0c80

save to cassette No. 1 memory from 0800 hex up to but not
including 0c80 hex and name it program name.

beware save with a file name breaks the irg saved by the monitor.

Do not use go command after load or save exit to basic and re-enter
monitor.

walk code
W

single step starting at address in register pc.
.w 1000

single step starting at address 1000 hex. Walk will cause a single
step to execute and will disassemble the next instruction.

control speed with choice of key:
K for single step;

RVS for slow step:
SPACE for fast stepping

exit to basic

X

return to basic ready mode. The stack value saved when entered will
be restored. Care should be taken that this value is the same as
when the monitor was entered. A clr in basic will fix any stack
problems.)

265

INDEX

A/D converters — 114
Absolute Addressing — 12
Absolute Indexed Addressing — 12
Accumulator — 7, 11
Addition — 8

Addressing Modes — 11
Arithmetic Unit — 7, 16
Arrays — 65

Array Format — 69

ASCIl — 60, 64

ASCII files — 191
Assembler — 29, 39

Basic Buffer — 48

Basic Interpreter — 45, 47, 71
Basic Tokens — 60, 61, 191
Binary Files — 183

Branch — 16

Break command — 15, 25

Carry Flag — 7, 14

Cassette — 188

Cassette Buffer — 49, 191

Cassette Motor — 188

Character Generator — 44, 113, 117,
120, 136

Chargot — 104

Chip Select — 156

Clock — 154

Colour — 45, 137

Colour RAM — 45, 112, 137

Data Direction Register — 158, 160
Data Modify Instructions — 23
Data Storage — 65

Decimal Mode — 14

Device Numbers — 227

Display Modes — 120

Display Format — 134

Division — 9

Flags — 14,17

Floating Point Accumulator — 71
Floating Point Variables — 65
Floppy Disk — 225

Flow D iagrams — 34
Functian Control — 181
Function Keys — 202

Garbage Collection — 70

Hand Assembly — 34
Handshake Lines — 181
High Resolution Display — 127

1/0 — 45,1562, 160

IEEE 488 — 224-236

|EEE Connector — 225

IEEE Timing — 228, 233
immediate Addressing — 11
implied Addressing — 11
Index Registers — 12, 20, 21
indexed Addressing — 12, 21
Indirect Indexed Addressing — 13, 21
Initiatisation — 24, 102, 106
Integer Variables — 65
Interrupt — 14, 24, 177
Interrupt Disable — 14
Interrupt Vectors — 25

IRQ — 24,156

Joystick — 114, 216-220
Jump — 16, 19

Kernal - 90-101
Keyboard — 197-203
Keyboard Buffer — 199

Light Pen — 114, 117

Line Number — 62

Link Acldress — 62

Loader — 30

Logical File Number — 227
Logical Operations — 10

Machine Code — 27, 32

Machine Code Monitor — 29, 39
Memory Expansion — 221-223
MemoryMap — 44

Memory Usage and Inst Cycle — 3
Microprocessor 6502 — 2
Multicalour Mode — 139

266

Multiple Precision
Multiplication — 9
Music — 143, 148
Negative Flag — 15
New Basic Instructions

NMI — 24
Op-Code — 16
Operand — 16

Operating System — 45, 47, 71
Overflow Flag — 14

Page Zero Memory — 12
Processor Status Register — 14
Program Counter — 16
Program Storage Format — 60
Pull Accumulator — 20

Push Accumulator — 20

RAM — 3,44

Recording Format —

Registers 6522 — 162

Registers 6561 — 113, 115
Registers R$232 — 207, 209, 211
Relative Addressing — 12
Reset Vector — 25

ROM — 3,45

RS-232 — 164, 204-215

Screen Centering — 1156
Serial 1/0 — 164, 204-215, 224-236

267

Shift Register — 173

Sound Generators — 114, 118, 144
Stack — 19, 47, 81

String Variables — 65

Subroutines — 73, 89

Subtraction — 9

SYS - 27,38

System Variables — 44, 47, 50-569

Talk and Listen — 224

Tape Error Checking — 192
Tape Format — 190

Timers — 164

Top of Memory Pointers — 28

User Definable Characters — 121
User Memory — 60

User Port — 152-184

USR — 27,38

Variable Pointer — 65
Variable Storage — 65
Vectored Jumps — 48, 89
VIA 6622 — 152-184

VIC 6661 — 112-148
Video Matrix — 115, 128
Video RAM — 112,136

Wedge code — 104

Zero Flag — 15
Zero Page Addressing — 12

